Design method helps animated characters gain physical form

July 28, 2017, Disney Research
Credit: Disney Research

Disney Research has developed a method for designing cable-driven mechanisms that help artists and hobbyists give physical form and motion to animated characters.

Assemblies of cables and joints make it possible to achieve desired motions and poses in a character, even when artistic preferences dictate limb sizes that make it infeasible to place motors at each joint. Cable-driven mechanisms also are suitable for devices, such as robotic hands, that must be small and lightweight to function.

"The advent of consumer-level 3D printing and affordable, off-the-shelf electronic components has given artists the machinery to make articulated, physical versions of animated characters," said research scientist Moritz Bacher. "Our approach eliminates much of the complexity of designing those mechanisms."

The researchers demonstrated their by designing a 2D puppet-like version of an animated character that is able to assume several desired fighting stances. They also used it to design a gripper for picking up light objects and a simple robotic hand with an opposable thumb.

They will present this method at SCA 2017, the ACM SIGGRAPH/Eurographics Symposium on Computer Animation July 28 in Los Angeles.

"A number of design tools developed over the past 30 years have enabled artists to breathe life into , creating expressions by posing a hierarchical set of rigid links," said Markus Gross, vice president at Disney Research. "In today's age of robotics and animatronics, we need to give artists and hobbyists similar tools to make animated physical characters just as expressive."

Cables can only exert force in one direction—by pulling—so fully actuated joints demand two cables to move in both directions. In this case, the Disney Research team designed devices that weren't intended to interact with people. They sought to minimize the number of cables and thus incorporated springs into the joints to move them in the opposite direction when the tension was eased.

The team, supported by researchers from ETH Zurich, the Massachusetts Institute of Technology and the University of Toronto, developed a method in which a user designs a skeletal frame or other assembly of rigid links and hinges and then specifies a set of target poses for those assemblies.

The method then computes a cable network that can reproduce those poses, initially generating a large set of cables—typically a thousand or more—with randomly chosen routing points. Redundant cables are then gradually removed. Next, the routing points are refined to take into account the path between poses and further reduce the number of cables and the amount of force necessary to control them.

In using the method to design and build its 2D "Fighter," the researchers showed that the mechanical character was able to achieve the desired poses with accuracy. The design for the lower body initially included 1600 cables; the number was then reduced in 25 seconds to eight; further refinement took just 181 seconds to reduce the number of cables to three.

The 2D gripper they designed and built was able to pick up the light objects it was designed to lift. The , with three fingers and a thumb, demonstrated that the method could be used to combine cable drives in more than one plane.

Explore further: Taking cue from nature, researchers design machines that bend

More information: "Designing Cable-Driven Actuation Networks for Kinematic Chains and Trees-Paper" [PDF, 9.72 MB]

Related Stories

Software systems add motion to physical characters

August 8, 2014

New 3D printing techniques have made it possible for just about anybody to fabricate fanciful plastic characters and sculptures, two new computational design methods developed by Disney Research Zurich are making it possible ...

New method enables more realistic hair simulation

April 24, 2017

When a person has a bad hair day, that's unfortunate. When a virtual character has bad hair, an entire animation video or film can look unrealistic. A new innovative method developed by Disney Research makes it possible to ...

More than animation: Software supports animated storytelling

November 17, 2016

Disney Research has developed new tools to help people use animation to tell stories by eliminating distracting details that hamper creativity, suggesting ways to fill holes in plots and assisting in the creation of virtual ...

Recommended for you

Technology near for real-time TV political fact checks

January 18, 2019

A Duke University team expects to have a product available for election year that will allow television networks to offer real-time fact checks onscreen when a politician makes a questionable claim during a speech or debate.

Privacy becomes a selling point at tech show

January 7, 2019

Apple is not among the exhibitors at the 2019 Consumer Electronics Show, but that didn't prevent the iPhone maker from sending a message to attendees on a large billboard.

China's Huawei unveils chip for global big data market

January 7, 2019

Huawei Technologies Ltd. showed off a new processor chip for data centers and cloud computing Monday, expanding into new and growing markets despite Western warnings the company might be a security risk.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.