Shocking case of indigestion in supermassive black hole

July 4, 2017
False colour image of NGC 5195 created by combining the VLA 20 cm radio image (red), the Chandra X-ray image (green), and the Hubble Space telescope H-alpha image (blue). The image shows the X-ray and H-alpha arcs, as well as the radio outflows from the supermassive black hole at the centre of NGC 5195. Credit: NRAO / AUI / NSF / NASA / CXC / NASA / ESA / STScI / U. Manchester / Rampadarath et al.

A multi-wavelength study of a pair of colliding galaxies has revealed the cause of a supermassive black hole's case of 'indigestion.' Results will be presented by Dr Hayden Rampadarath at the National Astronomy Meeting at the University of Hull.

Once every couple of hundred million years, the small galaxy NGC 5195 falls into the outer arms of its larger companion, NGC 5194, also known as the Whirlpool galaxy. Both galaxies are locked in a gravitational dance that will result – billions of years in the future – in the formation of a single galaxy.

As NGC 5195 plunges into the Whirlpool, matter streams onto the at NGC 5195's centre and forms an accretion disc. The disc grows to a point where the supermassive black hole can no longer accrete or 'digest' efficiently and matter is blasted out into the surrounding interstellar medium. Last year, NASA's Chandra X-Ray observatory spotted arcs of X-ray emission that appeared to result from this 'force-feeding.'

Now, new high-resolution images of the core of NGC 5195, taken with the e-MERLIN radio array, and archive images of the surrounding area from the Very Large Array (VLA), Chandra and the Hubble Space Telescope, reveal in detail how these blasts occur and spread. The study was led by astronomers at the University of Manchester's Jodrell Bank Centre for Astrophysics.

e-MERLIN maps of the nuclear region of NGC 5195 at 1.4 GHz (left) and 5 GHz (right). The images display a partially resolved source with possible parsec-scale outflows. Credit: e-MERLIN / U. Manchester / Rampadarath et al.

The supermassive black hole at the centre of NGC 5195 has a mass equivalent to 19 million Suns. When the accretion process breaks down, immense forces and pressures create a shock wave that pushes matter out into the interstellar medium. Electrons, accelerated close to the speed of light, interact with the magnetic field of the interstellar medium and emit energy at . The shock wave then inflates and heats up the , which emits in the X-ray, and strips the electrons from surrounding neutral hydrogen atoms to make ionised hydrogen gas. This inflated bubble creates the arcs detected by Chandra and Hubble.

Rampadarath explains: "Comparing the VLA images at radio wavelengths to Chandra's X-ray observations and the hydrogen-emission detected by Hubble, shows that features are not only connected, but that the radio outflows are in fact the progenitors of the structures seen by Chandra and Hubble. This is an event of galactic proportions that we can see right across the electromagnetic spectrum."

He adds: "The age of the arcs in NGC 5195 is 1-2 million years. To put that into context, the first traces of matter were being forced out of the black hole in this system at about the time that our ancestors were learning to make fire. That we are able to observe this event now through such a range of astronomical facilities is quite remarkable."

Explore further: Chandra finds supermassive black hole burping nearby

Related Stories

Chandra finds supermassive black hole burping nearby

January 5, 2016

Evidence for powerful blasts produced by a giant black hole has been discovered using NASA's Chandra X-ray Observatory. This is one of the nearest supermassive black holes to Earth that is currently undergoing such violent ...

Astronomers pursue renegade supermassive black hole

May 11, 2017

Supermassive holes are generally stationary objects, sitting at the centers of most galaxies. However, using data from NASA's Chandra X-ray Observatory and other telescopes, astronomers recently hunted down what could be ...

Hubble gazes into a black hole of puzzling lightness

January 13, 2017

The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle. At first ...

An Intriguing, Glowing Galaxy

May 14, 2009

A supermassive black hole may be responsible for the glowing appearance of galaxy 3C 305, located about 600 million light years away in the constellation Draco. Composite data from NASA’s Chandra X-ray Observatory and other ...

4C+29.30: Black hole powered jets plow into galaxy

May 15, 2013

(Phys.org) —This composite image of a galaxy illustrates how the intense gravity of a supermassive black hole can be tapped to generate immense power. The image contains X-ray data from NASA's Chandra X-ray Observatory ...

Recommended for you

Dawn of a galactic collision

December 14, 2017

A riot of colour and light dances through this peculiarly shaped galaxy, NGC 5256. Its smoke-like plumes are flung out in all directions and the bright core illuminates the chaotic regions of gas and dust swirling through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.