Study clears way to growing replacement body organs

July 10, 2017, Monash University

A discovery involving Monash University scientists promises to pave the way to producing replacement organs for damaged hearts, kidneys and bowels, using patients' own stem cells.

The research, pioneered by a team of scientists led by the Director of the Australian Regenerative Medicine Institute at Monash University, Professor Peter Currie, could overcome the severe shortage of for transplants.

The scientists focused on the zebrafish, a small, fast-growing tropical fish native to Southeast Asia, which is used widely as a model for human biology.

They found that a protein called Meox1, active in , is central to directing muscle growth. The ground-breaking results have been published in the latest edition of the prestigious journal, Cell Stem Cell.

Scientists world-wide have long been growing miniature organs in petri dishes, using them to better understand disease and natural self-repair mechanisms in the body, and for drug testing. Monash University has been at the forefront of these fields.

"But, we have known almost nothing about how organs grow in the living animal – the cellular basis of how stem cells make all that tissue," Professor Currie said.

"If we're ever going to grow complete organs in the laboratory or directly in a patient's body, we have to know how to grow them properly.

"My lab is exploring one of last frontiers of developmental biology – how organ growth is regulated by stem cells.

"Prior to our work in this field, we didn't even know that these growth-specific stem existed or how they were used. Just knowing that they exist leads us to the possibility of orchestrating them, controlling them, or reactivating them to regrow damaged tissue."

Professor Currie said while the stem cell discovery represented a significant advance in knowledge, the timeline for producing in the laboratory remained unknown, though closer now to science fact than fiction.

Explore further: Scientist identify first steps in muscle regeneration

More information: Phong Dang Nguyen et al. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest, Cell Stem Cell (2017). DOI: 10.1016/j.stem.2017.06.003

Related Stories

Scientist identify first steps in muscle regeneration

May 20, 2016

Scientists from Monash University's Australian Regenerative Medicine Institute ARMI have found the first real evidence of how muscles may be triggered to regenerate or heal when damaged. The research could open the way to ...

New study reveals pigs could grow human organs

June 21, 2011

(PhysOrg.com) -- At the annual European Society of Human Genetics conference, a group of researchers presented their newly discovered technique that may soon enable pigs to grow human organs for transplant.

Stem cells seem speedier in space

March 20, 2017

Growing significant numbers of human stem cells in a short time could lead to new treatments for stroke and other diseases. Scientists are sending stem cells to the International Space Station to test whether these cells ...

Scientists smash barrier to growing organs from stem cells

April 4, 2014

(Phys.org) —Scientists at the University of Virginia School of Medicine have overcome one of the greatest challenges in biology and taken a major step toward being able to grow whole organs and tissues from stem cells. ...

Dead feeder cells support stem cell growth

April 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells with essential nutrients.

Recommended for you

'Pest-controlling' bats could help save rainforests

December 11, 2018

A new study shows that several species of bats are giving Madagascar's rice farmers a vital pest control service by feasting on plagues of insects. And this, a zoologist at the University of Cambridge believes, can ease the ...

The source of stem cells points to two proteins

December 11, 2018

Mammalian embryos are unlike those of any other organism as they must grow within the mother's body. While other animal embryos grow outside the mother, their embryonic cells can get right to work accepting assignments, such ...

The food poisoning find that could save lives

December 11, 2018

Researchers at The Australian National University (ANU) have made a discovery that has the potential to save lives when treating bacterial infections, especially serious food poisoning.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.