World first: New polymer goes for a walk when illuminated

June 28, 2017, Eindhoven University of Technology
Timelapse image of the walking device. Credit: Bart van Overbeeke.

Scientists at Eindhoven University of Technology and Kent State University have developed a new material that can undulate and therefore propel itself forward under the influence of light. To this end, they clamp a strip of this polymer material in a rectangular frame. When illuminated it goes for a walk all on its own. This small device, the size of a paperclip, is the world's first machine to convert light directly into walking, simply using one fixed light source. The researchers publish their findings on 29 June in the scientific journal Nature.

The maximum speed is equivalent to that of a caterpillar, about half a centimeter per second. The researchers think it can be used to transport small items in hard-to-reach places or to keep the surface of solar cells clean. They placed grains of sand on the strip and these were removed by the undulating movement. The mechanism is so powerful that the strip can even transport an object that is much bigger and heavier than the device itself, uphill.

The motion of the new material is due to the fact that one side contracts in reaction to light, and the other one expands, causing it to bulge when illuminated. That deformation disappears instantaneously once the light is gone. Although the material looks transparent to the human eye, it fully absorbs the violet light the researchers used, thus creating a shadow behind it.

Here you see some experiments the researchers did with their new fast-responding, light-sensitive material. Credit: Eindhoven University of Technology.

The scientific team, led by professor Dick Broer of Eindhoven University of Technology, was able to create a continual undulating movement, using this 'self-shadowing' effect. They attached a strip of the material in a frame shorter than the strip itself, causing it to bulge. Then they shone a concentrated led light on it, from in front. The part of the strip that is in the light, starts to bulge downward, creating a 'dent' in the strip. As a consequence, the next part of the strip comes in the light and starts to deform. This way the 'dent' moves backwards, creating a continual undulating movement. This sets the device in motion, walking away from the light. When the is placed upside down, the wave travels in the opposite direction, causing it to walk towards the light.

The research team managed to reach this specific behavior of the material using 'liquid crystals' (familiar in ; lcd's). The principle relies on the incorporation of a fast responding light-sensitive variant in a liquid crystalline polymer network. They engineered a material in such a way that this response is translated to an instantaneous deformation of the strip when illuminated, and relaxation directly when the is gone.

TU Eindhoven scientist Anne Hélène Gélébart is showing the walking device. Credit: Bart van Overbeeke.

Explore further: New plastic material begins to oscillate spontaneously in sunlight

More information: Anne Helene Gelebart et al, Making waves in a photoactive polymer film, Nature (2017). DOI: 10.1038/nature22987

Related Stories

Researchers find path for light through opaque materials

November 8, 2016

Shining a light through opaque materials seems impossible. And yet, researchers at the Debye Institute for Nanomaterials Science (Utrecht University) and the University of Twente have managed to increase the transmission ...

Light-controlled gearbox for nanomachines

March 21, 2017

Rewarded with a Nobel Prize in Chemistry in 2016, nanomachines provide mechanical work on the smallest of scales. Yet at such small dimensions, molecular motors can complete this work in only one direction. Researchers from ...

Engineering team develops self-powered mobile polymers

November 10, 2016

One of the impediments to developing miniaturized, "squishy" robots is the need for an internal power source that overcomes the power-to-weight ratio for efficient movement. An international group involving Inha University, ...

Recommended for you

Tiny gels sop up intestinal toxins

March 20, 2018

Bacterial infections that target the intestine can cause conditions that range from uncomfortable to deadly. While it's easy to blame the bacteria, it's actually the toxins the bacteria produce that trigger inflammation, ...

Making fragrances last longer

March 20, 2018

From floral perfume to fruity body wash and shampoos, scents heavily influence consumer purchases. But for most, the smell doesn't last long after showering before it fades away. Scientists have now developed a way to get ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.