Researchers find path for light through opaque materials

November 8, 2016 by Nieske Vergunst, Utrecht University Faculty of Science
By sending light through a material several times, it is possible to find a path through which much more light can pass through the material. The researchers then measure the amount of light that makes it through this path at different wavelengths. Credit: Utrecht University Faculty of Science

Shining a light through opaque materials seems impossible. And yet, researchers at the Debye Institute for Nanomaterials Science (Utrecht University) and the University of Twente have managed to increase the transmission of light through an opaque material by shining it along special paths. This could lead to a better understanding of the transport of light through materials such as skin. The researchers published their results in the prestigious journal Optics Express on 7 November, 2016.

Light diffusion is a phenomenon that occurs when light waves come into contact with an uneven surface or in an object with an inhomogeneous structure. This diffusion makes it impossible to see through skin, paper or clouds, for example. These are largely opaque, and only a small percentage of the light can penetrate through them. And yet these materials do have open channels, special paths through the material that the light waves can follow, no matter how thick the material is. Utrecht Ph.D. student Jeroen Bosch has located these open channels to send much more light through an opaque material.

Ping pong with light

In order to discover precisely how the light should be projected on the material, the researchers "played ping pong" with the light. "We send the light through the material in a random manner, and then we use data about the scattering of the light to send it along the same path in a slightly different manner," Bosch explains. "That way, more light passes through the material." By repeating the process several times – sending the light back and forth through the material – the researchers discovered what shape the must have in order to make its way through the material.

All colours are different

The shape of the wave front – the front edge of the light wave – determines the degree to which the light can penetrate through the material. And the optimal shape of the wave front is different for every colour of light. "The principle works for all wavelengths, but for each wavelength, there is only a single shape of wave front that works," says Bosch. "If you fix the shape of the wave front and then change the wavelength, you see that less and less light penetrates through the material."

This knowledge of wavelength dependency of open channels provides the with a measurement for the 'path length' of these open channels. How long does the light travel along such a special path? The answer to this question provides insight into the transport of light through diffusive materials, which is extremely useful for looking into and through such materials.

Explore further: Physicists Transmit Light through Opaque Materials

More information: Jeroen Bosch et al. Frequency width of open channels in multiple scattering media, Optics Express (2016). DOI: 10.1364/OE.24.026472

Related Stories

Physicists Transmit Light through Opaque Materials

August 18, 2008

No matter how thick an opaque "scattering material" is, physicists have shown how to weave light through tiny open channels in the material, so that the light passes through on the other side.

Absorption straightens the drunken stagger of light

July 1, 2014

(Phys.org) —In a study partly funded by the FOM Foundation, physicists from the University of Twente and Yale University have discovered that light travelling through an opaque material follows a straighter path, if the ...

New material gives visible light an infinite wavelength

October 13, 2013

Researchers from the FOM Institute AMOLF and the University of Pennsylvania have fabricated a material which gives visible light a nearly infinite wavelength. The new metamaterial is made by stacking silver and silicon nitride ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.