Scientists develop computer-guided strategy to accelerate materials discovery

June 9, 2017, University of Liverpool
Scientists develop computer-guided strategy to accelerate materials discovery
Credit: University of Liverpool

Researchers at the University of Liverpool have developed a computer-guided strategy that led to the discovery of two new materials in the laboratory.

In a paper published in Nature, researchers describe an algorithm that uses chemical understanding of the structures of known materials to suggest which new combinations of will create a new material that is stable and can be synthesised. The researchers were then able to create two in the laboratory by experimental synthesis guided by the computer calculations.

Discovering new materials has been a slow and intensive process as there are millions of possible combinations of molecules and atoms. Exactly which combinations of elements will form materials is controlled by the structure that the material adopts (the arrangement of the atoms in space), which in turn depends on which elements are involved, and how many of each type. The is to find those combinations that are stable and potentially synthesisable from the millions that are created.

Grand challenge

Liverpool Materials Chemist, Professor Matt Rosseinsky, said: "Understanding which atoms will combine to form new materials from the vast space of possible candidates is one of the grand scientific challenges, and solving it will open up exciting scientific opportunities that could lead to important properties.

"The key step in this research was the ability to generate large numbers of truly representative structures that could be used to assess which element combinations were stable, which greatly narrowed the space that had to be explored experimentally – like having a map with someone's address, rather than knowing they live in London somewhere."

"One of the main future challenges in materials discovery is combining the prediction of composition and structure with prediction of properties. Our colleagues in Liverpool, within the same EPSRC-funded project, have recently reported a key advance here, also in Nature."

The development of new materials lies at the heart of many of the scientific, technological and industrial challenges today and in the future, for example creating advanced for energy generation and storage.

The paper 'Accelerated discovery of two crystal types in a complex inorganic phase field' is published in Nature.

Explore further: Scientists bridge different materials by design

More information: C. Collins et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field, Nature (2017). DOI: 10.1038/nature22374

Related Stories

Scientists bridge different materials by design

February 4, 2016

Scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them.

Molecular 'treasure maps' to help discover new materials

March 22, 2017

Scientists at the University of Southampton working with colleagues at the University of Liverpool have developed a new method which has the potential to revolutionise the way we search for, design and produce new materials.

Recommended for you

How the building blocks of life may form in space

April 25, 2018

In a laboratory experiment that mimics astrophysical conditions, with cryogenic temperatures in an ultrahigh vacuum, scientists used an electron gun to irradiate thin sheets of ice covered in basic molecules of methane, ammonia ...

Why we need erasable MRI scans

April 25, 2018

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is through the use of contrast agents—magnetic dyes injected into ...

Research gives new ray of hope for solar fuel

April 24, 2018

A team of Renewable Energy experts from the University of Exeter has pioneered a new technique to produce hydrogen from sunlight to create a clean, cheap and widely-available fuel.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.