Swimming microbots can remove pathogenic bacteria from water

June 28, 2017, American Chemical Society
Tiny, self-propelled robots trap bacteria and could help make water safer to drink (artist's rendering). Credit: The American Chemical Society

The lack of clean water in many areas around the world is a persistent, major public health problem. One day, tiny robots could help address this issue by zooming around contaminated water and cleaning up disease-causing bacteria. Scientists report a new development toward this goal in the journal ACS Applied Materials & Interfaces.

Drinking water contaminated with can cause serious illnesses that, in areas with spotty medical services, are potentially life-threatening without proper treatment. Water can be disinfected with chlorine or other disinfectants, but there are some hardy bacteria and other microorganisms that are hard to remove. Treating water with a combination of disinfectants or increasing their concentrations can help. But they remain in the water, and their byproducts can be harmful to human health. In recent years, researchers have been exploring the use of self-propelled micromotors to degrade and capture pollutants in water. Building on this work, Diana Vilela, Samuel Sánchez Ordóñez and colleagues wanted to see if they could engineer to remove waterborne bacteria.

The team designed "two-faced" spherical particles to perform the task. One face is made with magnesium, which reacts with water to produce hydrogen bubbles to propel the microbots. The other face is made out of alternating iron and gold layers topped by . Bacteria stick to the gold and are killed by the silver nanoparticles. Lab testing showed that the particles can motor around in water for 15 to 20 minutes before the magnesium is spent. And they trapped more than 80 percent of E. coli in water spiked with a high concentration of the . Then, because of the iron's magnetic properties, the microbots are removed easily with a magnet, without leaving behind any harmful waste in the .

Explore further: E. coli bacteria found in drinking water at US Open

More information: Diana Vilela et al. Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media, ACS Applied Materials & Interfaces (2017). DOI: 10.1021/acsami.7b03006

Abstract
Water contamination is one of the most persistent problems of public health. Resistance of some pathogens to conventional disinfectants can require the combination of multiple disinfectants or increased disinfectant doses, which may produce harmful byproducts. Here, we describe an efficient method for disinfecting Escherichia coli and removing the bacteria from contaminated water using water self-propelled Janus microbots decorated with silver nanoparticles (AgNPs). The structure of a spherical Janus microbot consists of a magnesium (Mg) microparticle as a template that also functions as propulsion source by producing hydrogen bubbles when in contact with water, an inner iron (Fe) magnetic layer for their remote guidance and collection, and an outer AgNP-coated gold (Au) layer for bacterial adhesion and improving bactericidal properties. The active motion of microbots increases the chances of the contact of AgNPs on the microbot surface with bacteria, which provokes the selective Ag+ release in their cytoplasm, and the microbot self-propulsion increases the diffusion of the released Ag+ ions. In addition, the AgNP-coated Au cap of the microbots has a dual capability of capturing bacteria and then killing them. Thus, we have demonstrated that AgNP-coated Janus microbots are capable of efficiently killing more than 80% of E. coli compared with colloidal AgNPs that killed only less than 35% of E. coli in contaminated water solutions in 15 min. After capture and extermination of bacteria, magnetic properties of the cap allow collection of microbots from water along with the captured dead bacteria, leaving water with no biological contaminants. The presented biocompatible Janus microbots offer an encouraging method for rapid disinfection of water.

Related Stories

Microbots can clean up polluted water

April 11, 2016

(Phys.org)—A new study shows that a swarm of hundreds of thousands of tiny microbots, each smaller than the width of a human hair, can be deployed into industrial wastewater to absorb and remove toxic heavy metals. The ...

Invention uses bacteria to purify water

April 4, 2017

A University of British Columbia-developed system that uses bacteria to turn non-potable water into drinking water will be tested next week in West Vancouver prior to being installed in remote communities in Canada and beyond.

Leveraging bacteria in drinking water to benefit consumers

August 8, 2012

Contrary to popular belief, purified drinking water from home faucets contains millions to hundreds of millions of widely differing bacteria per gallon, and scientists have discovered a plausible way to manipulate those populations ...

Recommended for you

Research team uncovers lost images from the 19th century

June 22, 2018

Art curators will be able to recover images on daguerreotypes, the earliest form of photography that used silver plates, after a team of scientists led by Western University learned how to use light to see through degradation ...

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.