Researchers develop mathematical method for defining electoral districts

June 23, 2017
Although the electoral wards for the German election were newly tailored in 2012, already in 2013, the year of the election, population changes led to deviations above the desired maximum value in some of them (left). The mathematical method results in significantly lower deviations, thus providing better fault tolerance. Credit: Image: F. Klemm / TUM

For democratic elections to be fair, voting districts must have similar sizes. When populations shift, districts need to be redistributed - a complex and, in many countries, controversial task when political parties attempt to influence redistricting. Mathematicians at the Technical University of Munich (TUM) have now developed a method that allows the efficient calculation of optimally sized voting districts.

When constituents cast their vote for a candidate, they assume it carries the same weight as that of the others. Voting districts should thus be sized equally according to population. When populations change, boundaries need to be redrawn.

For example, 34 political districts were redrawn for the upcoming parliamentary election in Germany—a complex task. In other countries, this process often results in major controversy. Political parties often engage in gerrymandering, to create districts with a disproportionately large number of own constituents. In the United States, for example, state governments frequently exert questionable influence when redrawing the boundaries of congressional districts.

"An effective and neutral method for political district zoning, which sounds like an administrative problem, is actually of great significance from the perspective of democratic theory," emphasizes Stefan Wurster, Professor of Policy Analysis at the Bavarian School of Public Policy at TUM. "The acceptance of democratic elections is in danger whenever parties or individuals gain an advantage out of the gate. The problem becomes particularly relevant when the allocation of parliamentary seats is determined by the number of direct mandates won. This is the case in majority election systems like in USA, Great Britain and France."

Test case: German parliamentary election

Prof. Peter Gritzmann, head of the Chair of Applied Geometry and Discrete Mathematics at TUM, in collaboration with his staff member Fabian Klemm and his colleague Andreas Brieden, professor of statistics at the University of the German Federal Armed Forces, has developed a methodology that allows the optimal distribution of electoral district boundaries to be calculated in an efficient and, of course, politically neutral manner.

The mathematicians tested their methodology using electoral districts of the German parliament. According to the German Federal Electoral Act, the number of constituents in a district should not deviate more than 15 percent from the average. In cases where the deviation exceeds 25 percent, electoral district borders must be redrawn. In this case, the relevant election commission must adhere to various provisions: For example, districts must be contiguous and not cross state, county or municipal boundaries. The electoral districts are subdivided into precincts with one polling station each.

Better than required by law

"There are more ways to consolidate communities to electoral districts than there are atoms in the known universe," says Peter Gritzmann. "But, using our model, we can still find efficient solutions in which all districts have roughly equal numbers of constituents - and that in a 'minimally invasive' manner that requires no voter to switch precincts."

Deviations of 0.3 to 8.7 percent from the average size of electoral districts cannot be avoided based solely on the different number of voters in individual states. But the new methodology achieves this optimum. "Our process comes close to the theoretical limit in every state, and we end up far below the 15 percent deviation allowed by law," says Gritzmann.

Deployment possible in many countries

The researchers used a mathematical model developed in the working group to calculate the electoral districts: "Geometric clustering" groups the communities to clusters, the optimized electoral districts. The target definition for calculations can be arbitrarily modified, making the methodology applicable to many countries with different laws.

The methodology is also applicable to other types of problems: for example, in voluntary lease and utilization exchanges in agriculture, to determine adequate tariff groups for insurers or to model hybrid materials. "However, drawing electoral boundaries is a very special application, because here mathematics can help strengthen democracies," sums up Gritzmann.

Explore further: Dutch ballots to be counted by hand amid hacking fears

More information: Andreas Brieden et al, Constrained clustering via diagrams: A unified theory and its application to electoral district design, European Journal of Operational Research (2017). DOI: 10.1016/j.ejor.2017.04.018

Related Stories

Using randomness to protect election integrity

April 10, 2017

Democratic societies depend on trust in elections and their results. Throughout the 2016 presidential election, and since President Trump's inauguration, allegations of Russian involvement in the U.S. presidential campaign ...

Can math solve the congressional districting problem?

August 4, 2015

Lost amidst the frenzy of coverage of the Supreme Court's rulings about the Affordable Care Act and same-sex marriage was a case involving the constitutionality of an independent commission to draw congressional districts ...

Climate change: Voters will be hot under the collar by 2099

October 26, 2016

By 2099 the nature of democratic politics could change in costly ways for politicians because of climate change, says Nick Obradovich of Harvard University in a paper in Springer's journal Climatic Change. Leveraging a century's ...

Recommended for you

Ancient DNA offers new view on saber-toothed cats' past

October 19, 2017

Researchers who've analyzed the complete mitochondrial genomes from ancient samples representing two species of saber-toothed cats have a new take on the animals' history over the last 50,000 years. The data suggest that ...

Six degrees of separation: Why it is a small world after all

October 19, 2017

It's a small world after all - and now science has explained why. A study conducted by the University of Leicester and KU Leuven, Belgium, examined how small worlds emerge spontaneously in all kinds of networks, including ...

Scientists see order in complex patterns of river deltas

October 19, 2017

River deltas, with their intricate networks of waterways, coastal barrier islands, wetlands and estuaries, often appear to have been formed by random processes, but scientists at the University of California, Irvine and other ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EmceeSquared
not rated yet Jun 24, 2017
Association of the people into districts which elect their representatives should be the fundamental building block of democracy. In the US, each ZIP code should vote in order of preference which of its adjoining ZIP codes it most closely associates with in a Congressional District. Then those associations should determine how each Congressional District is aggregated, by highest mutual vote.

This vote should be counted every election and be averaged across every 5. That means the people can change their CD without waiting for the decennial census to reallocate CDs.

This makes an objective mathematical allocation of the direct will of the people.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.