Can math solve the congressional districting problem?

August 4, 2015 by Kevin Knudson, The Conversation
The original 1812 gerrymander district designed to favor Massachusetts governor Elbridge Gerry. Credit: Elkanah Tisdale

Lost amidst the frenzy of coverage of the Supreme Court's rulings about the Affordable Care Act and same-sex marriage was a case involving the constitutionality of an independent commission to draw congressional districts in Arizona.

Through a ballot measure in 2000, the state amended its constitution to create a nonpartisan group to draw up new districts; the ultimate goal is to reduce gerrymandering. Named for the salamander-shaped district drawn by Massachusetts governor Elbridge Gerry in 1812, gerrymandering occurs when a state legislature draws voting district lines in a manner that benefits the ruling party at the expense of the opposition.

The goal is to consolidate power for the party in control, making it effectively impossible for the opposition to gain seats. Many state legislatures have engaged in this process recently, prompting grassroots movements advocating independent commissions to draw districts. The Supreme Court ruled 5–4 that Arizona's commission is constitutional.

This begs the question: is there a truly unbiased method for drawing fair districts that yield more competitive elections?

As it turns out, there are mathematical methods that could fit the bill.

Requirements of congressional districts

There are three primary requirements in federal law when drawing congressional districts: they must distribute population evenly, be connected and be "compact." The last term has never been rigorously defined. The Voting Rights Act of 1965 also insists on some guarantees of representation for minority voters.

Over the years state legislatures have employed various strategies to meet all these criteria – which has led to some interesting districts.

Can math solve the congressional districting problem?
Florida’s 5th Congressional District. US Dept. of the Interior

For instance, Florida's 5th Congressional District is one of the nation's most gerrymandered. It is connected geographically (barely), but it's probably not what most reasonable people would call compact since it stretches 140 miles from parts of Jacksonville in the north to Orlando in the south. A portion of its border runs along West 13th Street in Gainesville, dividing the college town in half.

Can math solve the congressional districting problem?

My own district, Florida's 3rd, shares that border along 13th Street in Gainesville. Because the lines are drawn this way, the western half of the city, which generally votes for Democratic candidates in local elections, is included in a large rural district represented by Ted Yoho, one of the most conservative Republican members of the House. Geographically, however, the 3rd district looks completely reasonable.

Little wonder the Florida Supreme Court ruled this summer that the 5th district, as well as several others in the state, must be redrawn without political bias.

Of course, gerrymandering is not restricted to any particular political party. Legislatures controlled by the Democratic Party have abused their power to draw districts (for example, Illinois' 4th Congressional District).

Most people agree that gerrymandering is bad, but it's not obvious what to do about it.

Splitline districting

One might approach voting reform by either changing the way we tabulate votes (for instance, via score voting, or fair majority voting) or by drawing the districts differently.

One unbiased way to draw districts is via the shortest splitline algorithm. It works like this. Suppose a state is to be divided into N districts. Let A be the largest integer less than or equal to N/2 and let B be the smallest integer greater than or equal to N/2. Then N = A + B (for example, 9 = 4 + 5).

Now find the shortest straight line that divides the population of the state into the ratio A:B. Ties are broken by choosing the line that is closest to north–south (other choices are possible). You then have two "substates" that need to be divided into A and B districts, respectively. Repeat the algorithm until the state is divided completely. Below, compare the actual (top) and splitline (bottom) districts for Florida as they were in 2009.

Florida’s congressional districts, 2009. Credit: Florida Office of Economic & Demographic Research

Florida shortest splitline districts, 2009. Credit: Center for Range Voting, algorithm by Warren D Smith, software by Ivan Ryan

It's not so easy to see, but, particularly in South Florida, there are some rather bizarre boundaries to the existing districts. The splitline algorithm eliminates these.

One obvious downside to this approach is that it ignores natural and political boundaries. There may be good reasons to put an entire city into one district, for example, but the algorithm might not make that happen.

One obvious advantage, however, is that the algorithm has no political loyalties or biases; it simply divides the population evenly into polygonal chunks on a map.

Drawing districts randomly

In a 2014 paper, mathematicians Jonathan Mattingly and Christy Vaughn introduced a probabilistic method for drawing districts. They were motivated by the fact that in North Carolina's 2012 election, a majority of voters selected Democratic candidates, yet only four of the state's 13 districts had a Democratic winner.

Their method considers the set of all possible divisions of the state into 13 districts with roughly equal population such that each district is connected and "compact." They also toss out those districts that are not "simply connected" in the sense that they entirely enclose another district – imagine a circular district containing another circular district.

They then define a class of probability measures on the set. This is a function that essentially gives the likelihood of a particular element of the set being chosen at random. Think of rolling a die – the probability measure assigns the value one-sixth to each of the six outcomes. The number of such divisions of the state is unimaginably large (on the order of 10²⁷⁸⁵), so it's effectively impossible to compute the probability distribution exactly. But, there are methods to estimate the function and therefore obtain useful results.

With these estimates in place, Mattingly and Vaughn ran simulations using the actual votes cast in 2012 to determine the outcome of the election using various randomly chosen redistrictings. Of 100 such maps, more than half had either seven or eight Democratic representatives, and all of them had between six and nine.

They estimate the probability of only four Democrats being elected in a particular districting – remember, that's the actual election outcome in real life – to be very small, raising the question of whether the current congressional district map of North Carolina results in representation that reflects the "will of the people."

Should we bother?

One approach is to do nothing and leave the system as it is, accepting the current situation as part of the natural ebb and flow of the political process. But when one political party receives a majority of votes nationally yet does not have control of the House of Representatives – as occurred in the 2012 election – one begins to wonder if the system needs some tweaks.

The advantage of using mathematics is that it's built on cold logic rather than political heat. But, there is no perfect algorithm (and there are others not mentioned here), so the optimal solution will likely require a mixture of science and art.

Explore further: By large margins, citizens dislike gerrymandering

Related Stories

By large margins, citizens dislike gerrymandering

July 1, 2014

By large margins, Virginians don't like the idea of politicians creating their own legislative districts. The once-a-decade exercise known as redistricting, which next rolls around in 2021, is a powerful tool for lawmakers ...

Minority political candidates just need a chance

February 11, 2014

It's not necessarily voters who should be blamed for the lack of minorities in state legislatures, but instead the two major political parties for not recruiting enough candidates, indicates new research by a Michigan State ...

Study: 'Carved-out' voters often struggle at ballot box

August 6, 2010

The age-old practice of dividing congressional districts evenly by population speaks to such American ideals as fairness and equality. But when a county's residents are carved into separate districts simply to maintain that ...

Report shows citizen-designed county redistricting worked

June 19, 2014

The citizen-designed redistricting plan for the Ventura County supervisorial districts has brought fairer representation, according to a study by a California Lutheran University professor published June 19 by SAGE Open, ...

Schools failing to address biased student discipline

June 2, 2015

School districts are failing to address the discipline gap between students of color and white students—in some cases even blocking researchers from gathering data on the troubling trend, a Michigan State University scholar ...

Recommended for you

Plague likely a Stone Age arrival to central Europe

November 22, 2017

A team of researchers led by scientists at the Max Planck Institute for the Science of Human History has sequenced the first six European genomes of the plague-causing bacterium Yersinia pestis dating from the Late Neolithic ...

How to cut your lawn for grasshoppers

November 22, 2017

Picture a grasshopper landing randomly on a lawn of fixed area. If it then jumps a certain distance in a random direction, what shape should the lawn be to maximise the chance that the grasshopper stays on the lawn after ...

Ancient barley took high road to China

November 21, 2017

First domesticated 10,000 years ago in the Fertile Crescent of the Middle East, wheat and barley took vastly different routes to China, with barley switching from a winter to both a winter and summer crop during a thousand-year ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
5 / 5 (3) Aug 04, 2015
I hope NC can get some of this, it's Gerrymandered to all hell and the GOP is working their hardest to drive the state into a feudal system for the mega-rich (like SC)
shavera
5 / 5 (1) Aug 04, 2015
I used to be firmly in this camp, but now I'm less sure. The problem is that historically, we've also segregated people into "compact" districts. So when you then divide up the state, even if it's algorithmically fair (say, most compact district algorithm), it may not be fair in the sense of providing an accurate representation of the vote.

Consider this famous representation: https://img.washi...p;w=1484

You can divide people into compact districts that totally misrepresent who votes for whom.

So... in light of this issue, I think the next best strategy is the one of states like Iowa, where a politically independent commission creates the districts within the state. So, that way at least, no one party can game it to their advantage.
ogg_ogg
not rated yet Aug 04, 2015
Lets take a system which randomly assigns each voter in a State (say) into one of 13 "districts" (such that the total number of registered voters in each district is equal to within 13 voters). That would be "fair" and "unbiased" and possible. I don't know of any other way to do it "unbiasedly". Selection is either random or biased. Any selection process that is not random, is biased. And of course, a random selection process doesn't guarantee that the result will be "unbiased" (just that the process of getting there was - flipping a coin and getting 3 heads in a row doesn't mean the coin isn't "fair"). Anyway back to my scenario. Can you imagine the impact of that randomization? First of all it breaks up every "special interest" group. Secondly, it would make campaigning almost impossible. Thirdly, most voters would be so confused as to who their candidates are, that they wouldn't show up at the poles...hmmm I wonder why it hasn't been tried? LOL. Here's an idea: let the voters decide
ogg_ogg
not rated yet Aug 04, 2015
Why not hold votes on districts? A district is SUPPOSED to be (imho) a group of voters with interests in common. Why not have a selection process which allows us to decide which "interests in common" are most important to us? It still allows crazy districts, but why not? In the internet age are compact or connected really all that important? Set a minimum "block" size and have a series of elections to figure it out.
EWH
not rated yet Aug 09, 2015
You'd have to amend the Constitution, but it would be far more democratic to eliminate districts. District voting and the Electoral College were both designed so that elections would not actually follow the popular will.

Having an at-large election with the top n candidates winning instead of n districts would be one solution. Having proportional representation where each representative's vote is weighted by the number of votes received would be another possibility. There are several other voting schemes that have been examined in many academic papers. Messing around with districting isn't solving the deeper issue.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.