New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water

June 13, 2017
Researchers observed robust binding between the ruthenium metal complex and carbon nitride nanosheets under visible light in aqueous solution. Credit: Angew. Chem.

With the on-going depletion of fossil fuels, the rise in greenhouse gases, the issue of how to make clean, safe and affordable energy remains a critical concern.

Following seminal work by Nobel laureate Jean-Marie Lehn and others in the 1980s, photocatalysts—materials that convert light to energy—have been increasingly explored as an efficient way of breaking down carbon dioxide (CO2) into useful, high-energy molecules. Compared with conventional approaches such as thermal catalysis, for example, photocatalysts have the advantage of not requiring costly procedures such as high temperatures and pressures.

Now, a research team led by Kazuhiko Maeda at Tokyo Tech has developed a new nanomaterial capable of reducing CO2 with a selectivity(Term.a) of 99% and a turnover(Term.b) number of more than 2000, outperforming existing methods.

These results are the highest recorded under visible light and in water, bringing Maeda's team a step closer to the goal of artificial photosynthesis—the design of systems that replicate the natural process of using sunlight, water and CO2 for sustainable energy production.

The new material, reported in Angewandte Chemie, consists of high-surface-area carbon nitride nanosheets combined with a metal structure known as a binuclear ruthenium(II) complex (RuRu'). Although different kinds of metal complexes are known to promote CO2 reduction, Maeda says that RuRu' is currently "the best-performing one" but needs to be replaced with precious metal-free counterparts in the future.

What makes the material unique is the extent to which the RuRu' binds to the nanosheet surface. Strong binding improves electron transfer, which in turn improves CO2 reduction. In the study, up to 70% of the RuRu' was found to be attached to the nanosheets—an unprecedented figure, Maeda explains, given that the carbon nitride surface is thought to be chemically inert. "This has been a big surprise in our research community," he says.

Also, to optimise performance, Maeda's team modified the nanosheets with silver, which plays an important role in improving electron capture and transfer efficiency.

The research opens up new possibilities for carbon nitride-based photocatalysts, as they work not only in water but also various organic solvents, which can be transformed into value-added chemicals such as aldehydes in the chemical industry.

"Until very recently, it seemed impossible to achieve CO2 reduction under in aqueous solution with high efficiency," says Maeda. "Our new result clearly demonstrates that this is indeed possible, even using a low-cost nitride-based material."

One of the next challenges for Maeda's team is to design photocatalysts consisting of earth-abundant metals such as iron and copper in place of the rare metal ruthenium.

Explore further: New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials

More information: Ryo Kuriki et al, Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective COReduction under Visible Light in Aqueous Solution, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201701627

Related Stories

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.