Bacteria used as factories to produce cancer drugs

June 2, 2017, Plataforma SINC
Bacteria used as factories to produce cancer drugs
Factories of E. coli bacteria, producing P450, bound to green fluorescent protein. Credit: DTU

Researchers at the Novo Nordisk Foundation Center for Biosustainability in Denmark have developed a method of producing P450 enzymes used by plants to defend against predators and microbes in bacterial cell factories. The process could facilitate the production of large quantities of the enzymes, which are also involved in the biosynthesis of active ingredients of cancer drugs.

P450 is the name of a type of cytochrome, a specialised . These are used by plants to synthesise with many different functions, but their main use is in defending against herbivores, insects and microbes.

"These powerful can be used as in drugs for treating diseases such as cancer and psoriasis," SINC was told by the Spanish researcher Darío Vázquez-Albacete, the lead author of a paper describing a new method of producing the enzymes in bacterial cell factories.

The findings of the study, developed at the Novo Nordisk Foundation Center for Biosustainability, a research facility managed by the Technical University of Denmark, were published in the journal Biotechnology and Bioengineering.

According to Vázquez-Albacete, "the new technique is a significant step forward, as plants produce P450 enzymes in very small amounts, extraction is very complex and sometimes we have to use polluting chemical synthesis processes which involve the use of oil derivatives. Additionally, some plant species such as the yew (Taxus baccata), from which the cancer drug Taxol is obtained, are endangered species."

Large-scale production

"We have developed tools which will allow the proteins from plants that produce these compounds to be recognized by the bacterial molecular machinery. The aim is to use bacteria because they arecapable of growing rapidly in controlled fermenters, allowing us to produce large quantities of the enzymes," says the researcher.

To achieve these results, the researchers modified and transferred P450 genes from plants to E. Coli bacteria and to check whether the microbes could produce larger quantities of these enzymes than existing methods.

Vázquez-Albacete says that "in order for the bacteria to properly express the enzymes, the corresponding DNA sequence must frequently be modified to facilitate 'decoding' by the bacteria's system."

In the study, the team developed a toolbox of 'auxiliary' DNA sequences, allowing them to express around 50 P450 enzymes from different plants in E. coli.

Some of these enzymes are involved in synthesising the natural compound ingenol, which is used to treat psoriasis and is currently manufactured using traditional chemical techniques. Other P450s are used to produce the cancer drug Taxol.

The researcher stresses that generate a variety of interesting compounds to protect them from the sun and from predators, dehydration, etc. "Many of these are synthesised by P450s, whose function is still very little understood, so there is enormous potential to discover new compounds."

Explore further: Biosynthetic secrets: How fungi make bioactive compounds

More information: Dario Vazquez-Albacete et al. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450, Biotechnology and Bioengineering (2017). DOI: 10.1002/bit.26203

Related Stories

Converting E. coli into a pharmaceutical factory

March 16, 2016

(Phys.org)—Taxol is the most well-known anti-cancer drug, and has proven remarkably effective against a variety of cancers since the 1970s. It's a natural substance, derived from the bark of yew trees, and as such, its ...

New research increases understanding of drug metabolism

March 17, 2010

Research led by Wayne L. Backes, PhD, Professor of Pharmacology and Associate Dean for Research at LSU Health Sciences Center New Orleans School of Medicine, has found that drug metabolism depends not only upon which enzymes ...

Microbes could make drug production more efficient

March 23, 2017

Alkaloid-based pharmaceuticals derived from plants can be potent treatments for a variety of illnesses. But getting these powerful therapeutic agents from plants can take a long time and cost plenty of money, because it often ...

Important bio-chemical produced on a large scale by E.coli

January 11, 2017

If you had a company that manufactured valuable ingredients for chemicals like detergens or paint, you would probably like to produce the ingredients in large quantities, sustainably, and at a low cost. That's what researchers ...

Recommended for you

Machine learning identifies links between world's oceans

March 21, 2019

Oceanographers studying the physics of the global ocean have long found themselves facing a conundrum: Fluid dynamical balances can vary greatly from point to point, rendering it difficult to make global generalizations.

How fluid viscosity affects earthquake intensity

March 21, 2019

Fault zones play a key role in shaping the deformation of the Earth's crust. All of these zones contain fluids, which heavily influence how earthquakes propagate. In an article published today in Nature Communications, Chiara ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.