Scientists find a way to pack grains and drugs most efficiently

May 12, 2017
Dr Mohammad Saadatfar from the ANU Research School of Physics and Engineering. Credit: Stuart Hay, ANU

Scientists have discovered a way to solve a problem that has baffled humans for so long it is mentioned in the Bible: achieving the most efficient packing of objects such as grains and pharmaceutical drugs.

Lead researcher Dr Mohammad Saadatfar from The Australian National University (ANU) said the knowledge could be vital for building skyscrapers on sand, understanding how grains were stored in silos, or how drugs were packed and delivered to specific targets in the body.

"It's crazy - sand is one of the most common building materials in the world and drugs are often packed in the forms of pills, but we really don't understand how assembly of grains or pills behave," said Dr Saadatfar from the ANU Research School of Physics and Engineering.

The international team of physicists and mathematicians used high-resolution CT scans to reveal how spherical particles in a disordered arrangement settle and compact themselves into ordered patterns.

"Now we believe that we have uncovered the mechanisms underlying the transition from disordered packing of grains to ordered structures," he said.

"Whenever spheres - such as soccer balls, ball bearings or atoms - are packed into a space, the most efficient packing is in a very ordered pattern, known as face-centred cubic.

"Sodium and chloride atoms in salt crystals are also arranged and ordered that way."

When organised that way, the spheres had a minimum of gaps between them, taking up just over 74 per cent of the space, Dr Saadatfar said.

"However, when settling quickly, spheres don't naturally form that arrangement, reaching only 64 per cent at best, an arrangement known as random closed packing," he said.

The team had previously shown that the 64 per cent packing is not a random arrangement. In fact, spheres tend to form into tightly-held arrangements of tetrahedra self-organised in rings of five.

"For a long time, scientists thought that packing spheres more efficiently was impossible to occur naturally and extremely difficult to observe in the lab," Dr Saadatfar said.

"That's because it's hard to move to the perfectly ordered structure. It requires breaking the disordered patterns that developed naturally and that are mechanically robust.

"You need to add just the right amount of energy for that - too little energy and the packing remains disordered, too much, the crystal will not form either."

Dr Saadatfar said the transition to a tighter packing arrangement was mentioned in the Bible.

"Luke 6:38 states 'A good measure, pressed down, shaken together and running over, will be poured into your lap. For with the measure you use, it will be measured to you.' It mentions all the experimental protocols that we used in lab - pressing down, shaking, pouring," Dr Saadatfar said.

"I'm not sure the authors of the Bible had nailed the mathematical basis of it."

The team used the relatively new field of mathematics known as homology to interpret 3-D images and large-scale computer simulations.

Dr Saadatfar said for different particle shapes, the mathematics became much more complex.

"When you look at footballs or M&Ms we've got a lot of work to do," Dr Saadatfar said.

"I'll be keeping my department supplied with M&Ms for the next few years."

Explore further: Nanotechnologists create minuscule soccer balls

More information: M. Saadatfar et al. Pore configuration landscape of granular crystallization, Nature Communications (2017). DOI: 10.1038/ncomms15082

Related Stories

Nanotechnologists create minuscule soccer balls

September 28, 2012

Nanotechnologists at the University of Twente's MESA+ research institute have developed a method whereby minuscule polystyrene spheres, automatically and under controlled conditions, form an almost perfect ball that looks ...

How particles pack in a confined space

February 10, 2016

(Phys.org)—Many biological systems involve dense packing of a large amount of material or particles in a confined space. For example, eukaryotes' nuclei hold about two meters of DNA that is tightly wound into chromosomes. ...

Trinity physicist finds new way to pack spheres efficiently

April 24, 2012

(Phys.org) -- New collaborative research has revealed the most efficient method to date for packing spherical objects into a cylinder. Dr Ho-Kei Chan, a Research Fellow from the Foams and Complex Systems research group at ...

Geometry's least-packable shapes

March 3, 2015

If you've ever struggled to pack a bunch of suitcases into the trunk of your car, you've got some idea of a basic problem in materials science: if you throw a bunch of atoms or molecules together, how do they fit together, ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.