Purifying cells to treat disease

May 1, 2017, Kyoto University
Various cell therapies involve injecting a specific cell type into a patient. These include, for example, bone marrow transplants and some types of immunotherapy that use T-cells (a white blood cell involved in immunity) to help fight cancer. Credit: royaltystockphoto / 123rf

Various cell therapies involve injecting a specific cell type into a patient. These include, for example, bone marrow transplants and some types of immunotherapy that use T-cells (a white blood cell involved in immunity) to help fight cancer.

Before cells are transplanted, they need to be purified to reduce the inclusion of unwanted with the that clinicians and researchers want to use. This process can be inefficient and limited—where all other cell types are not removed—or can damage the cells needed for a transplant, rendering them useless.

Many current purification techniques use antibodies that bind to cell surface receptors. Because receptors can be common in many cell types, they don't necessarily select and isolate only the chosen cells, but leave other unwanted cell types in the final treatment.

Hirohide Saito and colleagues at the Center for iPS [induced pluripotent stem] Cell Research and Application at Kyoto University are investigating methods that target signatures within cells rather than on the surface. Their tools look for very specific microRNAs (miRNAs)—small molecules that are found in plants and animals—which they believe will prove more selective and damage fewer cells.

miRNAs are active in gene expression and silencing; in other words, they can switch genes on and off.

The team has designed a synthetic tool they call the miRNA switch, which can find these small molecules within the cell. This tool has successfully purified several cell types, so the researchers are able to produce samples of solely , liver cells, cells that line blood vessels or cells that produce insulin. The percentage of purified cells is far higher than that using standard antibody purification because the markers the tool looks for are more specific than the commonly used antibodies and cell surface receptors. The are also less likely to be damaged compared with antibody-based techniques, because they do not need to be handled as much.

This work has been published in the journals Cell Stem Cell and Scientific Reports. The researchers hope to refine the technique so that it is attractive for clinical research and are now working with several groups that are planning cellbased therapies in patients.

Explore further: New types of blood cells discovered

Related Stories

New tools to study the origin of embryonic stem cells

March 23, 2017

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.