Physicists breeding Schroedinger cat states

May 1, 2017, Canadian Institute for Advanced Research
Schrödinger's cat: a cat, a flask of poison, and a radioactive source are placed in a sealed box. If an internal monitor detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison that kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead. Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead. This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other. Credit: Wikipedia / CC BY-SA 3.0

Physicists have learned how they could breed Schrödinger cats in optics. Scientists tested a method that could potentially amplify superpositions of classical states of light beyond microscopic limits and help determine the boundaries between the quantum and classical worlds.

CIFAR Quantum Information Science Fellow Alexander Lvovsky led the team of Russian Quantum Center and University of Calgary scientists who tested a method that could potentially amplify superpositions of classical states of light beyond microscopic limits and help determine the boundaries between the quantum and classical worlds.

The study was published today in Nature Photonics.

In 1935, German physicist Erwin Schrödinger proposed a thought experiment where a cat, hidden from the observer, is in a superposition of two states: it was both alive and dead. Schrödinger's cat was intended to show how radically different the macroscopic world we see is from the microscopic world governed by the laws of quantum physics.

However, the development of quantum technologies makes it possible to create increasingly complex quantum states, and Schrödinger's thought experiment no longer seems too far out of reach.

"One of the fundamental questions of physics is the boundary between the quantum and classical worlds. Can quantum phenomena, provided ideal conditions, be observed in macroscopic objects? Theory gives no answer to this question—maybe there is no such boundary. What we need is a tool that will probe it," says Lvovsky, who is a professor at the University of Calgary and head of the Quantum Optics Laboratory of the Russian Quantum Center, where the experiment was set up.

Exactly such a tool is provided by the physical analogue of the Schrödinger cat - an object in a quantum superposition of two states with opposite properties. In optics, this is a superposition of two coherent light waves where the fields of the electromagnetic waves point in two opposite directions at once. Until now, experiments could only obtain such superpositions at small amplitudes that limit their use. The Lvovsky group carried out the procedure of "breeding" such , which makes it possible to obtain optical "cats" of higher amplitudes with greater success.

Co-author and University of Calgary graduate student Anastasia Pushkina explains: "The idea of the experiment was proposed in 2003 by the group of Professor Timothy Ralph of the University of Queensland, Australia. In essence, we cause interference of two "cats" on a beam splitter. This leads to an entangled state in the two output channels of that beam splitter. In one of these channels, a special detector is placed. In the event this detector shows a certain result, a "cat" is born in the second output whose energy is more than twice that of the initial one."

The Lvovsky group tested this method in the lab. In the experiment, they successfully converted a pair of negative squeezed "Schrodinger cats" of amplitude 1.15 to a single positive "cat" of amplitude 1.85. They generated several thousand such enlarged "cats" in their experiment.

"It is important that the procedure can be repeated: new 'cats' can, in turn, be overlapped on a , producing one with even higher energy, and so on. Thus, it is possible to push the boundaries of the quantum world step by step, and eventually to understand whether it has a limit," says the first author of the study, a from the Russian Quantum Center and the Moscow State Pedagogical University, Demid Sychev.

Such macroscopic "Schrodinger cats" would have applications in communication, teleportation and cryptography.

Explore further: Making big 'Schroedinger cats': Quantum research pushes boundary by testing micro theory for macro objects

More information: Cultivation of optical Schrödinger's cat states, Nature Photonics (2017). nature.com/articles/doi:10.1038/nphoton.2017.57

Related Stories

Better tests for Schrodinger cats (Updated)

April 18, 2016

In a classical world, objects have pre-existing properties, physical influences are local and cannot travel faster than the speed of light, and it is in principle possible to measure the properties of macroscopic systems ...

Squeezed quantum cats

May 26, 2015

ETH professor Jonathan Home and his colleagues reach deep into their bag of tricks to create so-called 'squeezed Schrödinger cats.' These quantum systems could be extremely useful for future technologies.

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Recommended for you

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet May 01, 2017
In other words, for QM one requires more information to describe death and life, juz say'n

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.