Researchers use flashes of light to control signalling circuits in living cells

May 18, 2017
Resonant regulation of the neuronal stress response is shown. Credit: Michael Courtney

Researchers at the Turku Centre for Biotechnology have invented new tools for decoding and controlling signalling circuits in living cells with flashes of light. In principle, any cellular circuit can now be targeted with the new method. By using this approach, the researchers discovered that major biological signaling circuits can be made to resonate when driven at their resonant frequency.

Resonance is a familiar concept in music, physics and engineering, and underlies technical approaches in chemistry, biology and medicine.

"Our discovery that signalling of mammalian can made to resonate is new, and likely to have a relevance in the treatment of diseases. With this method, we can control when the signaling pathway is on or off," says senior researcher Michael Courtney from Turku Centre for Biotechnology at the University of Turku and Åbo Akademi University, Finland.

The team developed optogenetic inhibitors for protein kinases such as JNK, which is a central regulator of cell function.

"The JNK protein in the cell cytoplasm was not thought to regulate in the nucleus, and we considered continuous inhibition in the cytoplasm to be ineffective. However, the team found that delivering a specific frequency of inhibition pulses to JNK in the cytoplasm drove inhibition of gene expression in the nucleus. This indicates that cell signaling circuits can be controlled in previously unknown ways once the appropriate time code has been identified," says Courtney.

He explains that not only might cell circuit resonance play an unexpected role in degenerative disease processes, but it could even guide the discovery of new therapeutic approaches. Interestingly, the only previous report on cell circuit resonance in the scientific literature showed it can be used to prevent microbial cells from growing. This new discovery of similar behaviour in mammalian cells suggests it could potentially be used to stop cancer cells from growing.

"Currently, the development of resistance to new drugs is a major problem in cancer, as it cost billions of dollars to develop and approve , and yet they can rapidly become ineffective as a treatment. With this new research information, we can perhaps change the frequency instead of using the same and in this way achieve a better outcome," says Courtney.

The research team's of circuit resonance in might offer a way to avoid or work around drug resistance. The researchers have now assembled a research consortium and applied for funding in order to begin the evaluation of this idea.

Explore further: The researchers discovered an unexpected link between cancer and autism

More information: Raquel M. Melero-Fernandez de Mera et al, A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs, Nature Communications (2017). DOI: 10.1038/ncomms15017

Related Stories

Recommended for you

The astonishing efficiency of life

November 17, 2017

All life on earth performs computations – and all computations require energy. From single-celled amoeba to multicellular organisms like humans, one of the most basic biological computations common across life is translation: ...

Unexpected finding solves 40-year old cytoskeleton mystery

November 17, 2017

Scientists have been searching for it for decades: the enzyme that cuts the amino acid tyrosine off an important part of the cell's skeleton. Researchers of the Netherlands Cancer Institute have now identified this mystery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.