Speed-dependent attraction governs what goes on at the heart of midge swarms

April 19, 2017

Ever wondered what makes the collective behaviour in insect swarms possible? Andy Reynolds from Rothamsted Research, UK, and colleagues at Stanford University, California, USA, modelled the effect of the attraction force, which resembles Newton's gravity force, acting towards the centre of a midge swarm to give cohesion to their group movement. In a recent study published in EPJ E, their model reveals that the gravity-like attraction towards the heart of the swarm increases with an individual's flight speed. The authors confirmed the existence of such an attractive force with experimental data.

Reynolds and colleagues chose to focus on insect swarms, rather than bird flocks or fish shoals, because interactions between neighbouring individuals appear not to play a key role. This makes insect swarms easier to . Instead of building a model describing the microscale movement of individuals and confronting it with , the authors built a model of swarm behaviour that is consistent with experimental observations, in terms of swarm density, of individual midges' speed and acceleration. The model also reflects previous findings that the gravity-like increases with distance from the centre.

Previous studies pointed to midges interacting primarily via long-range acoustic sensing. Speed-dependent forces are very unusual, but they make biological sense because acoustic and visual interactions between midges—which are the basis of their adaptive movement—are very similar to gravitational interactions.

The new study brings to mind the notion of speed-dependent gravity developed by the XIXth century German physicist Paul Gerber. Einstein dismissed it as "completely useless", but the new study shows that midge swarms effectively behave like self-gravitating systems that are bound together by speed-dependent forces. It seems that cosmologists are not alone in their search for new models of gravity. Such models are now needed much closer to home.

Explore further: Scientists propose 'adaptive gravity' as a versatile model for collective animal behavior

More information: Andrew M. Reynolds et al, Are midge swarms bound together by an effective velocity-dependent gravity?, The European Physical Journal E (2017). DOI: 10.1140/epje/i2017-11531-7

Related Stories

Recommended for you

Spider-web 'labyrinths' may help reduce noise pollution

October 17, 2017

(Phys.org)—Researchers have demonstrated that the geometry of a natural spider web can be used to design new structures that address one of the biggest challenges in sound control: reducing low-frequency noise, which is ...

Plasma optic combines lasers into superbeam

October 17, 2017

Since its introduction in the 1977 film "Star Wars," the Death Star has remained one of science fiction's most iconic figures. The image of Alderaan's destruction at the hands of the Death Star's superlaser is burned into ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.