Computers create recipe for two new magnetic materials

April 14, 2017
A microscopic look at the atomic structure of a cobalt-manganese-titanium mixture (Co2MnTi) that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material matches the predictions for a stable three-element material. Credit: Pelin Tozman, AMBER and CRANN Institute, Trinity College, Dublin, Ireland

Material scientists have predicted and built two new magnetic materials, atom-by-atom, using high-throughput computational models. The success marks a new era for the large-scale design of new magnetic materials at unprecedented speed.

Although magnets abound in everyday life, they are actually rarities—only about five percent of known inorganic compounds show even a hint of . And of those, just a few dozen are useful in real-world applications because of variability in properties such as effective temperature range and magnetic permanence.

The relative scarcity of these can make them expensive or difficult to obtain, leading many to search for new options given how important magnets are in applications ranging from motors to (MRI) machines. The traditional process involves little more than trial and error, as researchers produce different molecular structures in hopes of finding one with magnetic properties. Many high-performance magnets, however, are singular oddities among physical and chemical trends that defy intuition.

In a new study, from Duke University provide a shortcut in this process. They show the capability to predict magnetism in new materials through computer models that can screen hundreds of thousands of candidates in short order. And, to prove it works, they've created two magnetic materials that have never been seen before.

The results appear April 14, 2017, in Science Advances.

"Predicting magnets is a heck of a job and their discovery is very rare," said Stefano Curtarolo, professor of mechanical engineering and materials science and director of the Center for Materials Genomics at Duke. "Even with our screening process, it took years of work to synthesize our predictions. We hope others will use this approach to create magnets for use in a wide range of applications."

The group focused on a family of materials called Heusler alloys—materials made with atoms from three different elements arranged in one of three distinct structures. Considering all the possible combinations and arrangements available using 55 elements, the researchers had 236,115 potential prototypes to choose from.

To narrow the list down, the researchers built each prototype atom-by-atom in a computational model. By calculating how the atoms would likely interact and the energy each structure would require, the list dwindled to 35,602 potentially stable compounds.

From there, the researchers conducted a more stringent test of stability. Generally speaking, materials stabilize into the arrangement requiring the least amount of energy to maintain. By checking each compound against other atomic arrangements and throwing out those that would be beat out by their competition, the list shrank to 248.

A microscopic look at the atomic structure of a manganese-platinum-palladium mixture (Mn2PtPd), that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material -- with the exception the small spots indicating a different phase state -- matches the predictions for a stable three-element material. Credit: Pelin Tozman, AMBER and CRANN Institute, Trinity College, Dublin, Ireland

Of those 248, only 22 materials showed a calculated magnetic moment. The final cut dropped any materials with competing alternative structures too close for comfort, leaving a final 14 candidates to bring from theoretical model into the real world.

But as most things in a laboratory turn out, synthesizing is easier said than done.

"It can take years to realize a way to create a new material in a lab," said Corey Oses, a doctoral student in Curtarolo's laboratory and second author on the paper. "There can be all types of constraints or special conditions that are required for a material to stabilize. But choosing from 14 is a lot better than 200,000."

For the synthesis, Curtarolo and Oses turned to Stefano Sanvito, professor of physics at Trinity College in Dublin, Ireland. After years of attempting to create four of the materials, Sanvito succeeded with two.

Both were, as predicted, magnetic.

The first newly minted magnetic material was made of cobalt, manganese and titanium (Co2MnTi). By comparing the measured properties of similarly structured magnets, the researchers were able to predict the new magnet's properties with a high degree of accuracy. Of particular note, they predicted the temperature at which the new material lost its magnetism to be 940 K (1232 degrees Fahrenheit). In testing, the actual "Curie temperature" turned out to be 938 K (1228 degrees Fahrenheit)—an exceptionally high number. This, along with its lack of , makes it potentially useful in many commercial applications.

"Many high-performance permanent magnets contain rare earth elements," said Oses. "And rare earth materials can be expensive and difficult to acquire, particularly those that can only be found in Africa and China. The search for magnets free of rare-earth materials is critical, especially as the world seems to be shying away from globalization."

The second material was a mixture of manganese, platinum and palladium (Mn2PtPd), which turned out to be an antiferromagnet, meaning that its electrons are evenly divided in their alignments. This leads the material to have no internal magnetic moment of its own, but makes its electrons responsive to .

While this property doesn't have many applications outside of magnetic field sensing, hard drives and Random Access Memory (RAM), these types of magnets are extremely difficult to predict. Nevertheless, the group's calculations for its various properties remained spot on.

"It doesn't really matter if either of these new magnets proves useful in the future," said Curtarolo. "The ability to rapidly predict their existence is a major coup and will be invaluable to materials scientists moving forward."

Explore further: Czech scientists develop magnetic carbon

More information: "Accelerated discovery of new magnets in the Heusler alloy family" Science Advances (2017). DOI: 10.1126/sciadv.1602241 , http://advances.sciencemag.org/content/3/4/e1602241

Related Stories

Czech scientists develop magnetic carbon

March 6, 2017

A dream of many generations of researchers has been fulfilled by a discovery made by scientists at the Regional Centre of Advanced Technologies and Materials (RCPTM) at the Palacky University in Olomouc. By using graphene, ...

For the first time, magnets are be made with a 3-D printer

October 25, 2016

Today, manufacturing strong magnets is no problem from a technical perspective. It is, however, difficult to produce a permanent magnet with a magnetic field of a specific pre-determined shape. That is, until now, thanks ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.