Black phosphorus holds promise for the future of electronics

April 20, 2017
Black phosphorus holds promise for the future of electronics
Credit: Yale University

Discovered more than 100 years ago, black phosphorus was soon forgotten when there was no apparent use for it. In what may prove to be one of the great comeback stories of electrical engineering, it now stands to play a crucial role in the future of electronic and optoelectronic devices.

With a research team's recent discovery, the material could possibly replace silicon as the primary material for electronics. The team's research, led by Fengnian Xia, Yale's Barton L. Weller Associate Professor in Engineering and Science, is published in the journal Nature Communications April 19.

With silicon as a semiconductor, the quest for ever-smaller electronic devices could soon reach its limit. With a thickness of just a few atomic layers, however, could usher in a new generation of smaller devices, flexible electronics, and faster transistors, say the researchers.

That's due to two key properties. One is that black has a higher mobility than silicon—that is, the speed at which it can carry an electrical charge. The other is that it has a , which gives a material the ability to act as a switch; it can turn on and off in the presence of an electric field and act as a semiconductor. Graphene, another material that has generated great interest in recent years, has a very high mobility, but it has no bandgap.

However, finding a way to control the bandgap of black phosphorus is critical to realizing its potential applications. To that end, the researchers have discovered that the material's bandgap is most controllable at a certain thickness. By applying a vertical to the material at that thickness, the researchers can "tune" the bandgap, essentially shrinking the moderate gap to the point where it nearly closes.

That opens up many potential applications for black phosphorus, such as imaging tools, night vision devices, mid-infrared optical modulators, on-chip spectroscopy tools, and other optoelectronic technologies.

"Before this study, the bandgap of black phosphorus could not be dynamically tuned, limiting its applications in optoelectronics," said Bingchen Deng, lead author of the study and a Ph.D. student in Xia's lab.

Finding the optimum thickness took some trial and error. "At first, we tried a 4-nanometer thick sample, and we found the bandgap tuning was not very pronounced," Deng said.

Deng also noted that having a bandgap that can be controlled means that black phosphorus could potentially be used as a topological insulator, a material with the unusual ability to serve as both an insulator (inside the material) and as a conductor (on its surface). Researchers are particularly interested in topological insulators, since they could be key to developing low-power electronics in which electrons at the surface do not suffer from scattering.

Explore further: Black phosphorus doesn't mind de-aerated water

More information: Bingchen Deng et al. Efficient electrical control of thin-film black phosphorus bandgap, Nature Communications (2017). DOI: 10.1038/ncomms14474

Vlada Artel et al. Protective molecular passivation of black phosphorous, npj 2D Materials and Applications (2017). DOI: 10.1038/s41699-017-0004-8

Related Stories

Black phosphorus doesn't mind de-aerated water

December 1, 2016

Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science(IBS) have discovered that one of graphene's competitors, black phosphorus, is inert to water deprived of oxygen, ...

Team engineers oxide semiconductor just single atom thick

February 8, 2017

A new study, affiliated with UNIST has introduced a novel method for fabrication of world's thinnest oxide semiconductor that is just one atom thick. This may open up new possibilities for thin, transparent, and flexible ...

Researchers develop new class of optoelectronic materials

April 11, 2017

Semiconductors are used for myriad optoelectronic devices. However, as devices get smaller and smaller and more demanding, new materials are needed to ensure that devices work with greater efficiency. Now, researchers at ...

Could black phosphorus be the next silicon?

July 7, 2015

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus could emerge ...

Recommended for you

Tick protein helps antibiotics combat MRSA super bug

April 27, 2017

A protein derived from ticks enhances the effectiveness of antibiotic treatment for methicillin-resistant Staphylococcus aureus, or MRSA, according to a Yale-led study. The strategy of using the protein in combination with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.