The most accurate measurement of rare meson decay confirms modern physics

April 13, 2017, Polish Academy of Sciences
Extremely rare Bs0 meson decay into two muons, registered in 2016 at the LHCb detector at CERN near Geneva. The enlargement at the bottom shows that the point of decay was 17 mm from the collision of two protons. Credit: IFJ PAN / CERN / The LHCb Collaboration

All physical theories are simplified representations of reality, and as a consequence, have a specified range of applicability. Many scientists working on the LHCb experiment at CERN had hoped that the exceptional accuracy in the measurement of the rare decay of the Bs0 meson would at last delineate the limits of the Standard Model, the current theory of the structure of matter, and reveal phenomena unknown to modern physics. But the spectacular result of the latest analysis has only served to extend the range of applicability of the Standard Model.

Mesons are unstable that arise as a result of proton collisions. Physicists are convinced that in some very rare decays of these particles, processes can potentially occur that may reveal physics, with the participation of previously unknown . Scientists at the LHC have been looking into the decay of the Bs0 into a muon and an anti-muon. The most recent analysis, carried out for a much greater number of events than ever before, has achieved a result that shows excellent agreement with the predictions of the Standard Model.

Prof. Mariusz Witek from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, says, "This result is a spectacular victory, only that it's slightly pyrrhic. It is, in fact, one of the few cases where experimentation agrees with theory, but still causes worry. Together with the improvement in the accuracy of measurement of the decays of Bs0 mesons, we expected to see new phenomena beyond the Standard Model, which we know with all certainly is not the ultimate theory. But instead, we have only shown that the model is more accurate than we originally thought."

The Standard Model is a theoretical framework developed in the 1970s to describe phenomena occurring among elementary particles. The model describes matter as composed of elementary particles from a group called fermions, including quarks (down, up, strange, charm, true and beauty) and leptons (electrons, muons, tauons and their associated neutrinos). In the , there are also particles of antimatter associated with their respective particles of matter. Intermediate bosons are responsible for carrying forces between fermions; photons are the carriers of electromagnetic forces; eight kinds of gluons are carriers of strong forces; bosons W+, W- and Z0 are responsible for carrying weak forces. The Higgs boson, recently discovered at the LHC, gives particles mass (all of them except for gluons and photons).

Muons are elementary particles with characteristics similar to those of electrons, only around 200 times more massive. In turn, B mesons are made up of two quarks: a beauty anti-quark and a down, up, strange or charm quark. The decay of the Bs0 meson into a muon and an anti-muon (endowed with positive electric charge) occurs extremely rarely. In the analyzed period of LHCb operation, there were hundreds of trillions of during which whole cascades of disintegrating secondary particles were recorded. With such a large number of events in a multi-stage selection process, it was only possible to pick out a few cases of this decay. One of them can be viewed in 3-D here.

In its most recent analysis, the LHCb experiment team took into account not only the first but also the second phase of operation of the LHC. The deeper statistics provided exceptional decay measurement accuracy of the beauty meson into a muon and anti-muon—up to 7.8 standard deviations (commonly denoted by the Greek letter sigma). In practice, this means that the probability of registering a similar result by random fluctuation is less than one to over 323 trillion.

"The spectacular measurement of the decay of the beauty meson into a muon-anti-muon pair agrees with the predictions of the Standard Model with an accuracy of up to up to nine decimal places," says Prof. Witek.

Despite the result, physicists are confident that the Standard Model is not a perfect theory. It does not take into account the existence of gravity, it does not explain the dominance of matter over antimatter in the contemporary universe, it offers no explanation of the nature of dark matter, it gives no answers regarding why fermions are composed of three families. In addition, for the Standard Model to work, over 20 empirically chosen constants have to be accounted for, including the mass of each particle.

"The latest analysis significantly narrows down the values of the parameters that should be assumed by certain currently proposed extensions of the Standard Model—for example, supersymmetric theories. They assume that each existing type of elementary particle has its own more massive counterpart—its superpartner. Now, as a result of the measurements, theorists dealing with supersymmetry have a reduced possibility of adapting their theory to reality. Instead of coming closer, the new physics is again receding," concludes Prof. Witek.

Physicists plan to continue their studies of the decay of the Bs0 meson into the muon and anti-muon pair. There is still a possibility that new, undiscovered effects are smaller than expected and continue to get lost in measurement errors.

Explore further: Particle physics discovery raises hope for a theory of everything

Related Stories

Is this the trailer for the upcoming LHC blockbuster?

March 3, 2016

In light of the latest analysis on the decay of beauty mesons, the dawn of a 'new physics', may be approaching. An important contribution to the analysis has been made by physicists from the Institute of Nuclear Physics of ...

How universal is (lepton) universality?

June 4, 2014

Just as a picture can be worth a thousand words, so the rarest processes at the Large Hadron Collider (LHC) can sometimes have the most to tell us. By isolating and counting decays of B+ mesons to a kaon and two leptons, ...

Physicists explain puzzling particle collisions

December 10, 2014

An anomaly spotted at the Large Hadron Collider has prompted scientists to reconsider a mathematical description of the underlying physics. By considering two forces that are distinct in everyday life but unified under extreme ...

Looking for charming asymmetries

September 29, 2016

One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter.

Recommended for you

Muons spin tales of undiscovered particles

April 20, 2018

Scientists at U.S. Department of Energy (DOE) national laboratories are collaborating to test a magnetic property of the muon. Their experiment could point to the existence of physics beyond our current understanding, including ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.