4 billion years: World's oldest fossils unearthed

March 1, 2017
Haematite tubes from the NSB hydrothermal vent deposits that represent the oldest microfossils and evidence for life on Earth. Credit: Matthew Dodd

Remains of microorganisms at least 3,770 million years old have been discovered by an international team led by UCL scientists, providing direct evidence of one of the oldest life forms on Earth.

Tiny filaments and tubes formed by bacteria that lived on iron were found encased in quartz layers in the Nuvvuagittuq Supracrustal Belt (NSB), Quebec, Canada.

The NSB contains some of the oldest sedimentary rocks known on Earth which likely formed part of an iron-rich deep-sea hydrothermal vent system that provided a habitat for Earth's first between 3,770 and 4,300 million years ago. "Our discovery supports the idea that life emerged from hot, seafloor vents shortly after planet Earth formed. This speedy appearance of life on Earth fits with other evidence of recently discovered 3,700 million year old sedimentary mounds that were shaped by microorganisms," explained first author, PhD student Matthew Dodd (UCL Earth Sciences and the London Centre for Nanotechnology).

Published today in Nature and funded by UCL, NASA, Carnegie of Canada and the UK Engineering and Physical Sciences Research Council, the study describes the discovery and the detailed analysis of the remains undertaken by the team from UCL, the Geological Survey of Norway, US Geological Survey, The University of Western Australia, the University of Ottawa and the University of Leeds.

Credit: University College London

Prior to this discovery, the oldest microfossils reported were found in Western Australia and dated at 3,460 million years old but some scientists think they might be non-biological artefacts in the rocks. It was therefore a priority for the UCL-led team to determine whether the remains from Canada had biological origins.

The researchers systematically looked at the ways the tubes and filaments, made of haematite - a form of iron oxide or 'rust' - could have been made through non-biological methods such as temperature and pressure changes in the rock during burial of the sediments, but found all of the possibilities unlikely.

The haematite structures have the same characteristic branching of iron-oxidising bacteria found near other hydrothermal vents today and were found alongside graphite and minerals like apatite and carbonate which are found in biological matter including bones and teeth and are frequently associated with fossils.

They also found that the mineralised fossils are associated with spheroidal structures that usually contain fossils in younger rocks, suggesting that the haematite most likely formed when bacteria that oxidised iron for energy were fossilised in the rock.

Haematite filament attached to a clump of iron in the lower right, from hydrothermal vent deposits in the Nuvvuagittuq Supracrustal Belt in Québec, Canada. These clumps of iron and filaments were microbial cells and are similar to modern microbes found in vent environments. Credit: M.Dodd

"We found the filaments and tubes inside centimetre-sized structures called concretions or nodules, as well as other tiny spheroidal structures, called rosettes and granules, all of which we think are the products of putrefaction. They are mineralogically identical to those in younger rocks from Norway, the Great Lakes area of North America and Western Australia," explained study lead, Dr Dominic Papineau (UCL Earth Sciences and the London Centre for Nanotechnology).

"The structures are composed of the minerals expected to form from putrefaction, and have been well documented throughout the geological record, from the beginning until today. The fact we unearthed them from one of the oldest known rock formations, suggests we've found direct evidence of one of Earth's oldest life forms. This discovery helps us piece together the history of our planet and the remarkable life on it, and will help to identify traces of life elsewhere in the universe."

Matthew Dodd concluded, "These discoveries demonstrate life developed on Earth at a time when Mars and Earth had liquid water at their surfaces, posing exciting questions for extra-terrestrial life. Therefore, we expect to find evidence for past on Mars 4,000 million years ago, or if not, Earth may have been a special exception."

Explore further: Oldest fossils point to thriving life on young Earth

More information: Matthew S. Dodd et al, Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature (2017). DOI: 10.1038/nature21377

Related Stories

Recommended for you

How to cut your lawn for grasshoppers

November 22, 2017

Picture a grasshopper landing randomly on a lawn of fixed area. If it then jumps a certain distance in a random direction, what shape should the lawn be to maximise the chance that the grasshopper stays on the lawn after ...

Plague likely a Stone Age arrival to central Europe

November 22, 2017

A team of researchers led by scientists at the Max Planck Institute for the Science of Human History has sequenced the first six European genomes of the plague-causing bacterium Yersinia pestis dating from the Late Neolithic ...

Ancient barley took high road to China

November 21, 2017

First domesticated 10,000 years ago in the Fertile Crescent of the Middle East, wheat and barley took vastly different routes to China, with barley switching from a winter to both a winter and summer crop during a thousand-year ...

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

richk
1.6 / 5 (7) Mar 01, 2017
how/could/they/be/bacteria/if/they/proceeded/universal/common/ancestor?
Phil DePayne
2 / 5 (4) Mar 01, 2017
I agree, they should be more careful in their wording, but it is a quite remarkable discovery nonetheless.
humy
4 / 5 (4) Mar 02, 2017
how/could/they/be/bacteria/if/they/proceeded/universal/common/ancestor?

richk

Why not? What do you see as the 'problem' here? There is none and I bet your erroneous perception of this non-existent 'problem' comes from some seriously massive misunderstanding of either what evolution IS or how it works.
richk
1 / 5 (1) Mar 02, 2017
how/could/they/be/bacteria/if/they/proceeded/universal/common/ancestor?

richk

Why not? What do you see as the 'problem' here? There is none and I bet your erroneous perception of this non-existent 'problem' comes from some seriously massive misunderstanding of either what evolution IS or how it works.


thanks/for/your/help/with/a/legitimate/question.I'm/glad/I/asked.
Da Schneib
not rated yet Mar 02, 2017
There is none and I bet your erroneous perception of this non-existent 'problem' comes from some seriously massive misunderstanding of either what evolution IS or how it works.
You can actually read that crap?

Sorry/man/I/just/had/to
Da Schneib
not rated yet Mar 02, 2017
Back on topic, fascinating. The oldest known life keeps creeping back toward the limits of the accretion of the Earth from the primordial solar nebula. Lots of evolution time there. And they're still alive today. You gotta love that when the hard of thinking keep whining about the Babble about the super magic sky daddy by the drunken stone age sheep herders. It's now pretty much about the fact that these idiots can't tell the difference between five and a billion.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.