Subtle steric differences reveal a model for Ni cross-coupling success

March 27, 2017, Princeton University

A new strategy for ligand design may enable challenging metal-catalyzed cross couplings reactions that are indispensable to drug development, according to a study published in Nature Chemistry. Based on subtle differences between ligand parameters, Princeton researchers have developed a predictive model for the success of a novel Ni-catalyzed cross-coupling reaction.

The widespread adoption of Pd-catalyzed cross-couplings, which has been recognized with the Nobel Prize, has been driven in large part by the extensive development of ligands, supporting molecules attached to the Pd center. Chemists have attempted to use these same ligands for cross-couplings promoted by Pd's cheaper sibling Ni with limited results.

Now, scientists in the Doyle lab have discovered a class of ligands capable of accessing new reactivity for Ni. These ligands, called phosphines, enabled the coupling of acetals with aryl boroxines to form valuable structures in medicinal chemistry known as benzylic ethers.

Given the molecules' unique framework, the team set out to parameterize the ligands' size and electronic properties, which can affect yield by crowding or pushing molecules off the metal center to accelerate bond forming reactions.

The researchers were surprised to find that two size parameters, cone angle and buried volume, that are typically equated in the literature had distinct and pronounced effects on the reaction. "It's the first time we saw this divergence between those parameters," said corresponding author Abigail Doyle, an associate professor of chemistry at Princeton University.

Cone angle measures the angle swept by an imaginary cone that enclosing the attached ligand group, while buried volume is the percent volume of a sphere occupied by a ligand. Buried volume is the newer measurement and useful for ligands like N-heterocyclic carbenes for which cone angle can't be calculated.

Put simply, cone angle works well for measuring distant ligands while buried volume is good for ligands that are nearby, said Kevin Wu, a graduate student in the Doyle lab and first author on the paper.

Wu tested the Ni-catalyzed reaction with more than a dozen phosphine ligands. Using the resultant reaction yields and calculated size parameters, he developed a ligand parameter regression model to correlate predicted yields to measured yields.

They found higher reaction yields for ligands with remote steric hindrance, that is molecules with bulky groups positioned far from the metal center. Their finding could help explain why ligands designed for Pd aren't as effective on the smaller Ni atom, which has shorter metal-phosphine bond lengths.

Using their model, the team calculated the yield for three ligands and found that two of their predictions came close to the actual yield. They also demonstrated good to high yields for a range of benzylic ether forming cross-couplings.

In the future, the researchers hope to improve methods for calculating parameters which currently assumes the lowest energy conformations of ligands instead of their dynamic reality. They also want to further apply models to tease out correlations between ligand parameters and the activity of elementary steps in the catalytic mechanism.

"It was really satisfying that parameterization let us confirm our hypothesis about the ligands," Wu said.

Explore further: Finding needles in chemical haystacks

More information: Kevin Wu et al, Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects, Nature Chemistry (2017). DOI: 10.1038/nchem.2741

Related Stories

Finding needles in chemical haystacks

October 15, 2016

A team of chemists including Daniel Weix from the University of Rochester has developed a process for identifying new catalysts that will help synthesize drugs more efficiently and more cheaply. The trick was to do something ...

Closer ties for silver clusters

December 20, 2016

Tiny clusters of silver atoms arranged with atomic level precision could become more versatile and useful due to a simpler way to hold them together.

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.