Scientists explain uneven color of spotted animals

March 2, 2017 by Institute Of Bioorganic Chemistry Of The Russian Academy Of Science
Credit: Snezhana Mazhekenova

Researchers at the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and colleagues have proposed a new mechanism for the dynamic self-organization of spatial structures in embryogenesis. Using mathematical modeling methods, the researchers have demonstrated that this self-organization may be due to a significant difference in the mutual penetration rates (diffusion) of morphogen proteins, which occurs due to differently binding biologically active substances (morphogens) in the extracellular matrix. The results of this research, which were published in PLOS ONE, create the preconditions for new models describing the variety of forms in the early stages of organism development.

In the early stages of development, the embryonic organs are composed of a plurality of identical cells, which then become complex spatial structures, and their sizes are much larger than the cells themselves. How does this happen? It is believed that such structures are formed as a result of dynamic self-organization, a process in which morphogen proteins secreted by cells and propagated over long distances play an important role. One of the conditions necessary for self-organization is finding a system located in a state of acute disequilibrium, that is, under conditions of strong dissipation of energy. Therefore, such structures formed during self-organization are often referred to as "dissipative."

"The increasing complexity of the embryo can be simplistically reduced to laws of territorial division, in which differentiated cells, i.e. those that have different functions, play different roles in the body. In many cases, instructions to this orderly spatial differentiation of embryonic tissue cells are obtained due to the formation of dissipative structures. They usually appear as concentration gradients of morphogen proteins. As a result, embryonic cells at different locations along this gradient are exposed to different morphogen concentrations—for example, hormones—and thus receive signals to differentiate," explains Andrey Zaraiskii, head of the Laboratory of Molecular Bases of Embryogenesis of the Institute of Bioorganic Chemistry of the Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences.

It is known that complex structures arise when there are at least two diffusing and nonlinearly interacting morphogens with sharply differing diffusion coefficients, i.e. the rate of penetration of one substance to another. However, real morphogen proteins have similar size and approximately the same mobility in aqueous solutions.

"What exactly leads to the achievement of the difference between the diffusion rates of the morphogens, which is necessary for the self-organization of dissipative structures? For a long time, this question remained open ended," says Alexey Nesterenko, a researcher from the Lomonosov Moscow State University. "Previously, we have shown that in the diffusion process in the intercellular space, different morphogens may bind with varying force with proteoglycans, specific proteins of the (substance)."

The researchers assumed that it is this difference in the nonspecific binding of morphogens that may provide a in their rate of diffusion.

"We have applied a mathematical model to demonstrate that a system comprising two uniformly-mobile morphogens with conditions in which one adsorbs on the extracellular matrix makes it possible to obtain the spatial structure of the mechanism of dynamic self-organization," explains Maxim Kuznetsov, one of the researchers from the P.N. Lebedev Physical Institute of the Russian Academy of Sciences.

The authors applied the new model to examples in multiple organisms, including the process of cuckoo-catfish coloring.

"This fish of the mochokid catfish family has a yellow coloring, with numerous black spots scattered throughout its body. The model that we have developed provides an adequate explanation for the formation and regular decrease in the number of spots of its color in the tail-to-head direction," says Daria Korotkov, one of the researchers, a student at the Lomonosov Moscow State University.

The approach creates the preconditions for the development of mathematical models for increasingly diverse morphological forms in embryogenesis. The researchers are already currently working on its further experimental confirmation.

Explore further: Russian biologists determine how frog heads are formed

More information: Alexey M. Nesterenko et al. Morphogene adsorption as a Turing instability regulator: Theoretical analysis and possible applications in multicellular embryonic systems, PLOS ONE (2017). DOI: 10.1371/journal.pone.0171212

Related Stories

Russian biologists determine how frog heads are formed

June 20, 2016

Russian biologists have studied the Noggin4 protein, which plays a crucial role in the formation of Xenopus toad heads (Xenopus laevis). The results of the research, published in Scientific Reports, expand understanding of ...

Scale models

August 22, 2011

Weizmann Institute scientists have added a significant piece to the puzzle of scaling – how patterns stay in sync with size as an embryo or organism grows and develops. In a new study appearing in Current Biology, Institute ...

New microdevice replicates embryonic spinal cord development

July 5, 2016

Researchers at the University of Maine MicroInstruments and Systems Laboratory (MISL), in collaboration with The Jackson Laboratory, have developed a new microfluidic tool that reproduces in the laboratory the same physiochemical ...

Recommended for you

What fly guts could reveal about our health

July 27, 2017

Increasingly understood to be vital for wellbeing, gut microbiota are the trillion of microorganisms that live in the digestive tract of humans and other animals. Known to affect a range of physiological traits including ...

Hostage situation or harmony? Researchers rethink symbiosis

July 27, 2017

Relationships where two organisms depend on each other, known as symbiosis, evoke images of partnership and cooperation. But a new study in Nature Ecology and Evolution shows that, when it comes to certain microorganisms, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.