Red and violet light reset the circadian clock in algae via novel pathway

March 30, 2017, Nagoya University
C. reinhardtii algae is illuminated with red (left) and violet (right) light, which resets their circadian clocks via a novel pathway. Credit: Ayumi Kinoshita

As anyone who has spent wakeful nights suffering from jetlag will attest, the human body has a strong sense of time. The body clock runs on a 24-hour cycle, or circadian (from the Latin meaning "about a day") rhythm. When our internal cycle gets out of sync with our surroundings, such as when crossing time zones, jetlag can result. The circadian rhythm therefore needs to be reset, which is achieved primarily by exposure to light.

However, such timekeeping prowess is not exclusively ours. A wide range of organisms benefit from the ability to sense and synchronize with their environments. For a photosynthetic organism—one that uses as an energy source—such as the green alga Chlamydomonas reinhardtii, keeping in sync with day and night is a particularly important ability. C. reinhardtii is a popular tool among researchers seeking to unpack how organisms sense and respond to light.

A Nagoya University-led team has now uncovered a pathway in C. reinhardtii that allows it to reset its when exposed to light. The researchers used C. reinhardtii that had been genetically altered to add a luminescent label to ROC15, a protein they previously showed is involved in circadian timekeeping. ROC15 levels are usually high overnight, then drop rapidly at dawn and remain low during daytime. Using this system, the team then screened over 10,000 different genetically mutated C. reinhardtii to identify genetic changes that disrupted the daily rhythm of ROC15.

"We identified several mutants in which the ROC15 daily response to light was impaired irrespective of the color of the light," says Ayumi Kinoshita lead author of the article reporting the results. "However, we were particularly intrigued to discover one mutant had a normal response to blue light, but a defective response to red or violet light—both the expected drop in ROC15 levels and the overall resetting of the circadian were impaired. This tells us there are at least two different pathways in C. reinhardtii that allow it to sense and respond to different colors of light."

Further investigation of this pathway revealed the gene whose mutation caused the defect. The researchers named the gene CSL. Restoring normal CSL in the mutant algae fixed the defective response of the circadian clock to red and violet light. However, the precise nature of the protein produced by the gene remains something of a mystery.

"We discovered that CSL produces a protein similar to one involved in a major in other organisms, including plants and animals" corresponding author Takuya Matsuo says. "The next challenge is to unravel exactly how it is involved in allowing C. reinhardtii to reset its circadian clock when exposed to red or violet light."

Explore further: Quasimodo illuminates the secret to the ticking of our internal clocks

More information: Ayumi Kinoshita et al, CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas, PLOS Genetics (2017). DOI: 10.1371/journal.pgen.1006645

Related Stories

Finding the body clock's molecular reset button

April 27, 2015

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep disturbances to other ...

Blast of thin air can reset circadian clocks

October 20, 2016

We might not think of our circadian clock until we are jetlagged, but scientists continue to puzzle over what drives our biological timepiece. Now, a study published October 20 in Cell Metabolism has found that variations ...

Controlling the body clock

December 22, 2016

A new study from the laboratory of Hiroki Ueda at the RIKEN Quantitative Biology Center investigates circadian timekeeping with a novel approach to creating genetic knock-out rescue mice. Published in Molecular Cell, the ...

Recommended for you

Revealing the mysteries of early development

May 23, 2018

Zebrafish embryos are transparent and develop outside the mother's body, enabling scientists to get a detailed view of early development. A research team led by Lila Solnica-Krezel, the Alan A. and Edith L. Wolff Distinguished ...

Study bolsters bats' reputation as mosquito devourers

May 23, 2018

It's a common assumption: Bats are important because they feast upon those pervasive warm-weather pests known as mosquitoes. You want to see bats flying above, cleaning up the night sky and ridding you of itchy bites and ...

Why birds don't have teeth

May 23, 2018

Why did birds lose their teeth? Was it so they would be lighter in the air? Or are pointy beaks better for worm-eating than the jagged jaws of dinosaur ancestors?

'Virtual safe space' to help bumblebees

May 22, 2018

The many threats facing bumblebees can be tested using a "virtual safe space" created by scientists at the University of Exeter. Bumble-BEEHAVE provides a computer simulation of how colonies will develop and react to multiple ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.