Next-gen steel under the microscope

March 16, 2017, University of Queensland
Eastern span of the San Francisco-Oakland Bay Bridge. The old and the new bridge, as seen at night from Yerba Buena Island to Oakland (mid-September 2013). The inset in the top left hand corner shows V Vanadium and 2H, Deuterium a hydrogen isotope (1 proton plus 1 neutron and 1 electron) as a Hydrogen substitute. Credit: Frank Schulenburg.

Next-generation steel and metal alloys are a step closer to reality, thanks to an international research project involving a University of Queensland scientist.

The work could overcome the problem of hydrogen alloy embrittlement that has led to catastrophic failures in major engineering and building projects.

UQ Centre for Microscopy and Microanalysis Director Professor Roger Wepf said the problem had been recognised for almost 140 years.

"The current generation of these metals can suffer hydrogen embrittlement, where they become brittle and fracture due to the accidental introduction of hydrogen during manufacture and processing," he said.

"A major example of alloy embrittlement occurred in 2013, when bolts in the eastern span of the San Francisco-Oakland bridge failed tests during construction."

Professor Wepf said hydrogen was extremely volatile and diffused quickly.

"Our research collaboration has, for the first time, localised and visualised hydrogen in steels and ," he said.

"This is essential for the development of new alloys with greater endurance."

"We have shown that it's possible to localise at atomic resolution—at the scale of a single atom—or at a nanometre (less than one-billionth of a metre) scale by combining different technologies in a closed and protected workflow.

"These include state-of-the-art cryo electron microscopy freezing techniques, low-temperature sample preparation in a cryo focused ion beam microscope, and inert cryo-transfer.

The research is published in Science.

Explore further: Study reveals clues to cause of hydrogen embrittlement in metals

More information: "Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel," Science, science.sciencemag.org/cgi/doi … 1126/science.aal2418

Related Stories

How can engineers make steel that doesn't baulk at hydrogen?

November 12, 2015

For over 100 years engineers have known that hydrogen can cause metals to become incredibly brittle, but they've been able to do little to protect against it. Now, Oxford University researchers are working on a large collaborative ...

New Sensor Could Help Avert Pipeline Failures

October 3, 2008

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology (NIST) and Colorado School of Mines (CSM) have developed a prototype sensor that quickly detects very small amounts of hydrogen accumulation ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

The taming of the light screw

March 22, 2019

DESY and MPSD scientists have created high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.