Hair spacing keeps honeybees clean during pollination: Researchers quantify the cleaning process

March 28, 2017 by Jason Maderer, Georgia Institute of Technology
The hair on a bee's eye. Credit: Georgia Tech

With honeybee colony health wavering and researchers trying to find technological ways of pollinating plants in the future, a new Georgia Tech study has looked at how the insects do their job and manage to stay clean.

According to the study, a can carry up to 30 percent of its body weight in pollen because of the strategic spacing of its nearly three million hairs. The hairs cover the insect's eyes and entire body in various densities that allow efficient cleaning and transport.

The research found that the gap between each eye hair is approximately the same size as a grain of dandelion pollen, which is typically collected by bees. This keeps the pollen suspended above the eye and allows the forelegs to comb through and collect the particles. The legs are much hairier and the hair is very densely packed—five times denser than the on the eyes. This helps the legs collect as much pollen as possible with each swipe. Once the forelegs are sufficiently scrubbed and cleaned by the other legs and the mouth, they return to the eyes and continue the process until the eyes are free of pollen.

The Georgia Tech team tethered bees and used to create the first quantified study of the honeybee cleaning process. They watched as the insects were able to remove up to 15,000 particles from their bodies in three minutes.

A honeybee cleans itself of commercial pollen in real-time and slow motion.

"Without these hairs and their specialized spacing, it would be almost impossible for a honeybee to stay clean," said Guillermo Amador, who led the study while pursuing his doctoral degree at Georgia Tech in .

This was evident when Amador and the team created a robotic honeybee leg to swipe pollen-covered eyes. When they covered the leg with wax, the smooth, hairless leg gathered four times less pollen.

The high-speed videos also revealed something else.

A honeybee is covered in commercial pollen. Credit: Candler Hobbs, Georgia Tech

"Bees have a preprogrammed cleaning routine that doesn't vary," said Marguerite Matherne, a Ph.D. student in the George W. Woodruff School of Mechanical Engineering. "Even if they're not very dirty in the first place, bees always swipe their eyes a dozen times, six times per leg. The first swipe is the most efficient, and they never have to brush the same area of the eye twice."

The research also found that pollenkitt, the sticky, viscous fluid found on the surface of pollen grains, is essential. When the fluid was removed from pollen during experiments, bees accumulated half as much.

A microscopic image of a honeybee's leg hair. Credit: Georgia Tech

"If we can start learning from natural pollinators, maybe we can create artificial pollinators to take stress off of bees," said David Hu, a professor in the Woodruff School of Mechanical Engineering and School of Biological Sciences. "Our findings may also be used to create mechanical designs that help keep micro and nanostructured surfaces clean."

The study, "Honeybee hairs and pollenkitt are essential for capture and removal," is published in the journal Bioinspiration and Biomimetics.

Explore further: A hairy situation: Hair increases surface area for animals by 100 times

More information: Guillermo J Amador et al. Honey bee hairs and pollenkitt are essential for pollen capture and removal, Bioinspiration & Biomimetics (2017). DOI: 10.1088/1748-3190/aa5c6e

Related Stories

Bees use multiple cues in hunt for pollen

November 10, 2016

Bees use a variety of senses and memory of previous experiences when deciding where to forage for pollen, research by the University of Exeter suggests.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

CarnSoaks
not rated yet Mar 31, 2017
Or solve why bee die-back is occurring please.

Is it past the point of no return already? Are we doomed to teach our children about the Bird and the Robot Pollination Drones (sic)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.