3-D X-ray imaging makes the finest details of a computer chip visible

March 16, 2017 by Paul Piwnicki
3-D representation of the internal structure of a microchip (an Intel processor). The view shown is exactly at the level where the transistors are. The material in yellow is copper — showing the processor’s circuit connections which link the individual transistors with each other. To illustrate, several interconnections whose lines could be followed through the volume examined have been coloured. The lines shown individually are around 45 nanometres wide (45 millionths of a millimetre); in all, a piece of the processor of around 10 micrometres (10 thousandths of a millimetre) in diameter was examined. Credit: Paul Scherrer Institute/Mirko Holler

Researchers of the Paul Scherrer Institute PSI have made detailed 3-D images of a commercially available computer chip. This marks the first time a non-destructive method has visualized the paths of a chip's internal wiring (just 45 nanometres—45 millionths of a millimetre—wide) and its 34-nanometre-high transistors clearly without distortions or deformations. It is a major challenge for manufacturers to determine if, in the end, the structure of their chips conforms to the specifications. Thus these results represent one important application of an X-ray tomography method that the PSI researchers have been developing for several years. In their experiment, the researchers examined a small piece that they had cut out of the chip beforehand. This sample remained undamaged throughout the measurement. The goal now is to extend the method in such a way that it can be used to examine complete chips. The researchers conducted the experiments at the Swiss Light Source SLS of the Paul Scherrer Institute.

They report their results in the latest edition of the journal Nature.

The electrical wiring in many of the electronic chips in our computers and mobile phones are just 45 nanometres wide, the transistors 34 nanometres high. While it is standard practice today to produce structures this delicate, it remains a challenge to measure the exact structure of a finished chip in detail in order to check, for example, if it is built according to the specifications. Nowadays, for such examinations, manufacturers mainly use a method in which layer after layer of the chip is removed and then, after each step, the surface is examined with an electron microscope; this is known as FIB/SEM—focused ion beam/scanning electron microscope imaging.

Now researchers of the Paul Scherrer Institute PSI have used X-rays to achieve non-destructive 3-D imaging of a chip, so that the paths of the conducting lines and the positions of the individual transistors and other circuit elements became clearly visible. The image resolution we were able to produce is comparable to the conventional FIB/SEM examination method, explains Mirko Holler, leader of the project. But we were able to avoid two significant disadvantages: Firstly, the sample remained undamaged, and we have complete information about the . Secondly, we avoided distortions of the images that arise in FIB/SEM if the surface of the individual slice is not exactly planar.

3-D representation of the internal structure of a microchip (an Intel processor). Shown in yellow are the chip’s copper interconnects, which link the individual transistors with each other. The smallest lines shown individually are around 45 nanometres wide (45 millionths of a millimetre); in all, a piece of the processor of around 10 micrometres in diameter (10 thousandths of a millimetre) was examined. The animation is based on X-ray measurements conducted at the Swiss Light Source SLS of the Paul Scherrer Institute. Credit: Paul Scherrer Institute/Mirko Holler

Positioned with nanometre precision

For their study, the researchers used a special tomographic method (ptychotomography) that they have developed and enhanced over the course of recent years, and which today offers the worldwide best resolution of 15 nanometres (15 millionths of a millimetre) for examination of a comparably large volume. In the experiment the object to be studied is X-rayed at precisely determined places with light from the Swiss Light Source SLS of the Paul Scherrer Institute—for each illuminated spot a detector then measures the X-ray light pattern after its passage through the sample. The sample is then rotated in small steps and then X-rayed again step-wise after each turn. From the whole set of data obtained, the three-dimensional structure of the sample can be determined. With these measurements, the position of the sample must be known to a precision of just a few nanometres—that was one of the particular challenges in setting up our experimental station, Holler says.

In their experiment the researchers examined small pieces of two chips—a detector chip developed at PSI and a commercially available computer chip. Each piece was about 10 micrometres (that is, 10 thousandths of a millimetre) in size. While the examination of an entire chip with the present measurement setup is not possible, the method's advantages are brought to bear even in this form, so that the first prospective users have already expressed an interest in conducting measurements at PSI.

PSI researchers Mirko Holler (right) and Manuel Guizar-Sicairos at the cSAXS beamline of the Swiss Light Source SLS of the Paul Scherrer Institute. Here they made the three-dimensional structure of a microchip visible. Credit: Paul Scherrer Institute/Markus Fischer

The goal: to examine entire microchips

We are currently starting to extend the method in such a way that it can be used to examine entire microchips within an acceptable measurement time. Then it will also be possible to study the same area of a multiple times, for example to observe how it changes under external influences, explains Gabriel Aeppli, head of the Synchrotron Radiation and Nanotechnology Division at the PSI.

A second 3-D representation of the internal structure of a microchip (an Intel processor). Credit: Paul Scherrer Institute/Mirko Holler

Explore further: 3-D images of tiny objects down to 25 nanometres

More information: Mirko Holler et al. High-resolution non-destructive three-dimensional imaging of integrated circuits, Nature (2017). DOI: 10.1038/nature21698

Related Stories

3-D images of tiny objects down to 25 nanometres

March 30, 2015

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how particular chemical ...

Sixteen nanometres in 3D

June 11, 2014

Tomography enables the interior of a vast range of objects to be depicted in 3D – from cellular structures to technical appliances. Researchers from the Paul Scherrer Institut (PSI) have now devised a method that opens ...

New method for studying individual defects in transistors

December 6, 2016

Scientists from the University of Twente's MESA+ Research Institute have developed a method for studying individual defects in transistors. All computer chips, which are each made up of huge numbers of transistors, contain ...

Researchers use holography to improve nanophotonic circuits

February 24, 2017

Nanophotonic circuits, tiny chips which filter and steer light, suffer from small random variations which degrade the transmission of light. Researchers have now found a way to compensate those variations, which may lead ...

New way of studying the tiniest microcrystals

August 6, 2015

Unlocking the mysteries of microcrystals can be a huge challenge for scientists. But a European team led by scientists from DESY – a German national research centre composed of a series of particle accelerators – have ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.