New research on why plant tissues have a sense of direction

February 7, 2017
Professor Enrico Coen. Credit: John Innes Centre

Scientists at the John Innes Centre, Norwich have published new evidence that plant tissues can have a preferred direction of growth and that this characteristic is essential for producing complex plant shapes.

The work, carried out by Dr Alexandra Rebocho and colleagues in Professor Enrico Coen's laboratory, contributes a new piece to the puzzle of how plant shapes are formed, and could have wide implications on our understanding of shape formation, or 'morphogenesis', in nature. Improved understanding of how genes influence plant shape formation could inform research into crop performance and lead to better-adapted, higher yield crop varieties.

The pioneering research, published in eLife, required an integrative approach, using diverse techniques including computer modelling, 3-D-imaging, fluorescence imaging and a range of genetic techniques.

Plant organs, such as leaves, petals, and fruits, each start out as a tiny ball of cells that grow into a specific final shape. The precise shape of these organs has been modified over millions of years of evolution in relation to specific functions such as attracting pollinators or catching sunlight.

One of the prevailing theories of how complex plant shapes develop, upon which this new research builds, is the theory of ' conflict resolution'. At the heart of shape development are internal differences in how tissue regions grow, and it is the resolution of these conflicts that produces shapes. These tissue conflicts are not contentious, but precisely coordinated, with their resolution leading to a particular flower or leaf shape.

Within the 'tissue conflict resolutions' theory, growth outcomes depend on groups of cells, called tissues. In isolation, individual regions of tissue would simply grow equally in all directions, or elongate in a .

In reality, tissue regions do not occur in isolation. The adhesion and cohesion between adjoining regions, each following their own growth patterns, creates stresses, which cause the tissues to buckle, curve or bend to a compromise state.

These three-dimensional, out-of-plane tissue deformations are found extensively within the plant and animal kingdoms, and underlie some critical processes of animal development, including gut folding, neurulation, and development of the cerebral cortex.

There are three proposed types of tissue conflict resolution: areal, surface and directional. Areal conflict is between two areas of tissue within a surface, and surface conflicts occur between adjoining, but distinct, surfaces. Both areal and surface conflicts have been previously shown to be important for shape development.

The new paper, published today in eLife, provides evidence for the third category: directional conflict. Tissues, or collections of tissues, can have a set of directions, or 'polarity field', caused by asymmetrical distribution of proteins within cells. Tissue regions may respond to this directionality, i.e. grow faster parallel or perpendicular to the local polarity field.

Much like surface and areal conflicts, adjoining tissues with differing specified directions of growth will lead to conflicts. When combined, resolution of the three types of conflict can produce vastly diverse and complex shapes.

This research moves us one step closer to understanding how genes can influence the remarkably intricate and beautiful plant shapes we see all around us.

Explore further: Blueprint for shape in ancient land plants

More information: Alexandra B Rebocho et al. Generation of shape complexity through tissue conflict resolution, eLife (2017). DOI: 10.7554/eLife.20156

Related Stories

Blueprint for shape in ancient land plants

December 9, 2016

Scientists from the Universities of Bristol and Cambridge have unlocked the secrets of shape in the most ancient of land plants using time-lapse imaging, growth analysis and computer modelling.

Scientists present first model of how buds grow into leaves

March 1, 2012

Leaves come in all shapes and sizes. Scientists have discovered simple rules that control leaf shape during growth. Using this 'recipe', they have developed the first computer model able to accurately emulate leaf growth ...

How the dragon got its 'snap'

November 9, 2010

Scientists at the John Innes Centre and the University of East Anglia are pioneering a powerful combination of computer modeling and experimental genetics to work out how the complex shapes of organs found in nature are produced ...

The science of spring flowers—how petals get their shape

April 30, 2013

Why do rose petals have rounded ends while their leaves are more pointed? In a new study published April 30 in the open access journal PLOS Biology, scientists from the John Innes Centre and University of East Anglia, UK, ...

Elucidating optimal biological tissue shape during growth

June 11, 2014

A team of European scientists has now extended a previous biophysical model to investigate elongated growth within biological tissues by describing the evolution over time of the shape of a fruit fly's wing. They found the ...

Recommended for you

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

Gene editing in the brain gets a major upgrade

October 19, 2017

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn't work in cells that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.