Most stretchable elastomer for 3-D printing

February 9, 2017
A 3-D printed conductive buckyball that works as an electric switch. Credit: Dinesh K. Patel

Due to its excellent material properties of elasticity, resilience, and electrical and thermal insulation, elastomers have been used in a myriad of applications. They are especially ideal for fabricating soft robots, flexible electronics and smart biomedical devices which require soft and deformable material properties to establish safe and smooth interactions with humans externally and internally.

However, to date, the most widely used silicon rubber-based elastomers require a thermal curing process which significantly limits its fabrication in traditional ways, such as by cutting, molding and casting, which constrains design freedom and geometric complexity. In order to enrich the design and fabrication flexibility, researchers attempted to use 3D , such as the ultraviolet (UV) curing based 3D printing techniques that solidify liquid polymer resins to 3D objects through patterned UV light, to fabricate elastomeric 3D objects. Nevertheless, most of the commercially available UV curable thus 3D printable elastomers break at less than 200% (two times the original length), which makes it unsuitable for many applications.

Recently, researchers have developed a family of highly stretchable and UV curable (SUV) elastomers that can be stretched by up to 1100%, and are suitable for UV curing based 3D printing techniques. This work is a collaborative effort between researchers from the Singapore University of Technology and Design's (SUTD) Digital Manufacturing and Design (DManD) Centre which is funded by the Singapore National Research Foundation (NRF), the Hebrew University of Jerusalem (HUJI), and the Campus for Research Excellence and Technological Enterprise (CREATE), also funded by the NRF. Details of this project appeared in the Journal of Advanced Materials on 7 February 2017.

"We have developed the most stretchable 3D printable elastomer in the world," said Assistant Professor Qi (Kevin) Ge from the SUTD's DManD Centre, who is one of the co-leaders in developing the SUV elastomers. He added: "Our new elastomers can be stretched by up to 1100% which is more than five times the elongation at break of any commercially available elastomer that is suitable for UV curing based 3D printing techniques."

Using high resolution 3D printing with the SUV elastomer compositions enables the direct creation of complex 3D lattices or hollow structures that exhibit extremely large deformation. "The new SUV elastomers enable us to directly print complicated geometric structures and devices such as a 3D soft robotic gripper within an hour. Compared to traditional molding and casting methods, using UV curing based 3D printing with the SUV elastomers significantly reduces the fabrication time from many hours, even days, to a few minutes or hours as the complicated and time-consuming fabrication steps such as mold-building, molding/demolding, and part assembly are replaced by a single 3D printing step," said Dr Ge.

The SUV elastomers not only sustain large elastic deformation, but also maintain good mechanical repeatability, which makes them good materials for fabricating . To demonstrate this, the researchers fabricated a 3D buckyball light switch that still works after being pressed for more than 1000 times.

"Overall, we believe the SUV elastomers, together with the UV curing based 3D printing techniques, will significantly enhance the capability of fabricating soft and deformable 3D structures and devices including soft actuators and robots, flexible electronics, acoustic metamaterials, and many other applications," said Professor Shlomo Magdassi who is a co-leader of this project at HUJI and CREATE.

Explore further: Additive manufacturing—a new twist for stretchable electronics?

More information: Dinesh K. Patel et al, Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing, Advanced Materials (2017). DOI: 10.1002/adma.201606000

Related Stories

Artificial muscle for soft robotics: Low voltage, high hopes

July 21, 2016

Soft robots do a lot of things well but they're not exactly known for their speed. The artificial muscles that move soft robots, called actuators, tend to rely on hydraulics or pneumatics, which are slow to respond and difficult ...

Research team develops method to strengthen elastomers

April 11, 2014

(Phys.org) —A team of researchers working in France has found a way to toughen elastomers—a class of rubbers. In their paper published in the journal Science, the team describes how they used a technique similar to that ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.