Scaling up the next generation of UAVs

February 16, 2017, Texas A&M University
Scaling up the next generation of UAVs
Adam Kellen, holding the 29 gram cyclcopter, and Dr. Benedict, standing next to the upscaled cyclorotor. Credit: Texas A&M University

After working for more than a decade on hover-capable drones no bigger than the palm of a hand, Dr. Moble Benedict and a team of researchers are studying the feasibility of scaling these concepts to larger unmanned aircraft (UAVs).

Developing the next generation of UAVs requires revolutionary vehicle concepts that are compact, hover-efficient, high-speed capable, highly maneuverable with low acoustic-signatures and high gust tolerance. Benedict, a professor in the Department of Aerospace Engineering at Texas A&M University, and his team have been conducting pioneering research on these hover-capable Micro Aerial Vehicle (MAV) concepts for the Army, Navy and NASA, along with the University of Maryland. 

Through this research, Benedict hopes to develop the next generation of propulsion systems for large-scale UAVs. He believes that these propulsion systems may have some performance advantages in terms of efficiency, forward flight speed, agility and gust tolerance when compared to conventional helicopter rotors.

So far, the key outcomes from this research are the development of the first flying cyclocopter, the only two-winged hover-capable flapping-wing aircraft in the 100-gram weight category, and successful demonstration of hover to forward flight transition of a 250-gram quad-biplane. These novel concepts have shown unprecedented performance over conventional helicopters at micro scales.

Research at Texas A&M will now focus on upscaling the cyclopcopter and flapping wing for larger vertical take-off and landing (VTOL) capable UAVs. Today, large-scale UAVs are used for intelligence, surveillance and reconnaissance types of missions, as well as carrying weapons systems and other large payloads. They also have civilian applications, such as aerial photography and potential package delivery. VTOL is highly desired for any of these applications.

A cyclocopter uses a cycloidal rotor consisting of multiple airfoils rotating around a horizontal axis to generate lift and thrust. This makes it very maneuverable, able to transition from a stable hovering position to high-speed forward flight without needing to pitch itself forward like a helicopter. At small scales, cyclocopters are able to utilize available 3-D space, requiring a much smaller footprint than conventional helicopters, resulting in a highly compact flying vehicle.

Scaling up the next generation of UAVs
Credit: Texas A&M University

Adam Kellen, an aerospace graduate student on Benedict's team says, "Developing cutting edge VTOL UAVs requires engineers to consider alternative propulsion methods to combat poor flight time. The cycloidal rotors' ability to operate at high-pitch amplitudes without stalling among other aerodynamic phenomenon at micro scales are key to its performance and are the focus of the current UAV scale research."

Benedict's team is looking at the feasibility of upscaling their cycloidal rotor to be used on larger VTOL UAVs weighing hundreds of pounds, and whether they would be viable in small manned aircraft. They are targeting test drones scaled up in size in the tens of pounds. They will be looking at how the vehicles perform as the scale increases, how they compare to helicopters and whether they become more efficient with scaling up.

Biological flapping-wing flight offers superior maneuverability with excellent gust tolerance. Benedict's research will focus on understanding the underlying unsteady aeroelastic mechanisms present in flapping wings and how these would scale up with size. Benedict's goal is to understand why, in nature, only insects and the smallest of birds are capable of hover flight.

The team will develop some aeroelastic scaling laws and conduct some benchtop experiments using a scaled-up flapper around four times the size of the wing used on their 60-gram robotic hummingbird. The goal is to measure the forces, wing shape and flowfield around the wing. This will help them understand the underlying physics on a scaled-up wing. Based on these results, they will decide whether it is worthwhile to build a scaled-up flapping-wing UAV.

Scalability in both cases entails understanding how aerodynamics, structural mechanics, vehicle dynamics/stability/controllability and weight scales with size. State-of-the-art test rigs will be designed and built to measure the aeromechanics of dynamically scaled rotor/wing models in a range of various sizes.

"If this study proves that these concepts are indeed scalable up to a manned aircraft, it could pave the way for the next generation of flying vehicles such as personal air vehicles, air taxis and more," Benedict says.

Explore further: Tiny UAVs and hummingbirds are put to test

Related Stories

Tiny UAVs and hummingbirds are put to test

July 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the hummingbird's ...

VTOL X-Plane program takes off

March 19, 2014

For generations, new designs for vertical takeoff and landing aircraft have remained unable to increase top speed without sacrificing range, efficiency or the ability to do useful work. DARPA's VTOL Experimental Plane (VTOL ...

Recommended for you

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.