VTOL X-Plane program takes off

March 19, 2014
DARPA’s VTOL Experimental Plane (VTOL X-Plane) program seeks to enable radical improvements in vertical takeoff and landing (VTOL) flight through innovative cross-pollination between the fixed-wing and rotary-wing worlds. In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of VTOL X-Plane to four companies: Aurora Flight Sciences, Boeing, Karem Aircraft and Sikorsky. Three of the four—Boeing (top), Karem Aircraft (middle) and Sikorsky (bottom)—provided concept images of their proposed designs.

For generations, new designs for vertical takeoff and landing aircraft have remained unable to increase top speed without sacrificing range, efficiency or the ability to do useful work. DARPA's VTOL Experimental Plane (VTOL X-Plane) program seeks to overcome these challenges through innovative cross-pollination between the fixed-wing and rotary-wing worlds, to enable radical improvements in vertical and cruise flight capabilities.

In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of VTOL X-Plane to four companies:

  • Aurora Flight Sciences Corporation
  • The Boeing Company
  • Karem Aircraft, Inc.
  • Sikorsky Aircraft Corporation

"We were looking for different approaches to solve this extremely challenging problem, and we got them," said Ashish Bagai, DARPA program manager. "The proposals we've chosen aim to create new technologies and incorporate existing ones that VTOL designs so far have not succeeded in developing. We're eager to see if the performers can integrate their ideas into designs that could potentially achieve the performance goals we've set."

VTOL X-Plane seeks to develop a technology demonstrator that could:

  • Achieve a top sustained flight speed of 300 kt-400 kt
  • Raise aircraft hover efficiency from 60 percent to at least 75 percent
  • Present a more favorable cruise lift-to-drag ratio of at least 10, up from 5-6
  • Carry a useful load of at least 40 percent of the vehicle's projected gross weight of 10,000-12,000 pounds

All four winning companies proposed designs for unmanned vehicles, but the technologies that VTOL X-Plane intends to develop could apply equally well to manned . Another common element among the designs is that they all incorporate multipurpose technologies to varying degrees. Multipurpose technologies decrease the number of systems in a vehicle and its overall mechanical complexity. Multipurpose technologies also use space and weight more efficiently to improve performance and enable new and improved capabilities.

The next major milestone for VTOL X-Plane is scheduled for late 2015, when the four performers are required to submit preliminary designs. At that point, DARPA plans to review the designs to decide which to build as a technology demonstrator, with the goal of performing flight tests in the 2017-18 timeframe.

Explore further: Experimental aircraft program to develop the next generation of vertical flight

Related Stories

US looks for answers after hypersonic plane fails

August 12, 2011

Pentagon scientists on Friday acknowledged they were puzzled by the failed flight test of an experimental hypersonic plane and said they were trying to understand what went wrong.

Recommended for you

Volumetric 3-D printing builds on need for speed

December 11, 2017

While additive manufacturing (AM), commonly known as 3-D printing, is enabling engineers and scientists to build parts in configurations and designs never before possible, the impact of the technology has been limited by ...

Tech titans ramp up tools to win over children

December 10, 2017

From smartphone messaging tailored for tikes to computers for classrooms, technology titans are weaving their way into childhoods to form lifelong bonds, raising hackles of advocacy groups.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.