Cloud formation—how feldspar acts as ice nucleus

December 9, 2016 by Monika Landgraf, Karlsruhe Institute of Technology
Cloud formation—how feldspar acts as ice nucleus
Ice crystals on a feldspar crystallite under the electron microscope. Although they grow on various levels of the feldspar, they have the same orientation. Credit: Alexei Kiselev and Dagmar Gerthsen, KIT

In the atmosphere, feldspar particles act as ice nuclei that make ice crystals grow in clouds and enable precipitation. The discovery was made by researchers of Karlsruhe Institute of Technology (KIT) and University College London (UCL) with the help of electron microscopy observations and molecular dynamics computer modeling. The ice nucleus proper is a quasi-hidden crystal surface of the feldspar that is exposed at surface defects only. The researchers present their findings in Science.

About 90 percent of precipitation over land depends on the formation of in clouds, which fall down due to their increasing weight. But water in clouds only freezes when certain are present, on which ice crystals can grow. Of all aerosol particles, i.e. solid suspended particles in the atmosphere, however, only few act as . These rare aerosol particles decisively determine precipitation on earth. Hence, it is important to understand what makes them differ from other particles. "Such an understanding would improve our ability to predict ice and precipitation formation in a future changed climate with changed aerosol loading," says Professor Thomas Leisner, Head of the Atmospheric Aerosol Research Division of KIT's Institute of Meteorology and Climate Research (IMK-AAF).

Scientists of IMK-AAF, in cooperation with researchers of the KIT Laboratory of Electron Microscopy (LEM) and University College London (UCL) have now succeeded in solving this question for the most important class of inorganic atmospheric ice nuclei, i.e. mineral dust particles consisting of feldspar. As is reported in Science, the scientists combined observations with molecular modeling to determine for the first time the atomic nature of this important inorganic ice nucleus. They showed that ice starts to grow on feldspar crystallites not on the accessible crystalline faces, but at microscopic defects like edges, cracks, and small depressions. Even though these defects are distributed randomly at the crystallite surface, the ice crystals grow with the same orientation relative to the feldspar crystal lattice.

From these observations and from extensive molecular modeling, the scientists concluded that a specific crystal face that only occurs at defects on the surface of the feldspar crystallite is the underlying nucleus for ice formation. "Feldspar is one of the most active atmospheric ice nucleating agents, but why it is so good at making ice has remained unclear," said Professor Angelos Michaelides of UCL. "By identifying the active site for ice nucleation on feldspar, we have found an important piece of the puzzle." The researchers now expect similar studies to reveal the properties of other minerals acting as ice nuclei.

Explore further: Geologists explore minerals below Earth's surface

More information: A. Kiselev et al. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars, Science (2016). DOI: 10.1126/science.aai8034

Related Stories

Geologists explore minerals below Earth's surface

October 13, 2016

A Florida State University geology researcher is going deep below the Earth's surface to understand how some of the most abundant minerals that comprise the Earth's crust change under pressure.

Cloud research may lead to improved precipitation forecasts

March 18, 2015

From light, airy, and spotless white to threatening and grey-black: Clouds are encountered in various forms. At the AIDA "cloud chamber", scientists of Karlsruhe Institute of Technology (KIT) study how clouds form and which ...

Recommended for you

Interfacing with the brain

June 15, 2018

The nervous system is loaded with encoded information: thoughts, emotions, motor control. This system in our bodies is an enigma, and the more we can do to understand it, the more we can do to improve human life. Brain-machine ...

Electronic skin stretched to new limits

June 15, 2018

An electrically conductive hydrogel that takes stretchability, self-healing and strain sensitivity to new limits has been developed at KAUST. "Our material outperforms all previously reported hydrogels and introduces new ...

Researchers can count on improved proteomics method

June 15, 2018

Every cell in the body contains thousands of different protein molecules and they can change this composition whenever they are induced to perform a particular task or convert into a different cell type. Understanding how ...

Modern alchemists are making chemistry greener

June 14, 2018

Ancient alchemists tried to turn lead and other common metals into gold and platinum. Modern chemists in Paul Chirik's lab at Princeton are transforming reactions that have depended on environmentally unfriendly precious ...

This is what a stretchy circuit looks like

June 14, 2018

Researchers in China have made a new hybrid conductive material—part elastic polymer, part liquid metal—that can be bent and stretched at will. Circuits made with this material can take most two-dimensional shapes and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

cgsperling
not rated yet Dec 09, 2016
They don't specifically mention snowflakes in the article, but an obvious question would be: Do these hexagonal crystals account for six-sided snowflakes?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.