Solar smart window could offer privacy and light control on demand

November 16, 2016, American Chemical Society
Scientists have developed a solar smart window that could power itself and other devices. Credit: American Chemical Society.

Smart windows get darker to filter out the sun's rays on bright days, and turn clear on cloudy days to let more light in. This feature can help control indoor temperatures and offers some privacy without resorting to aids such as mini-blinds. Now scientists report a new development in this growing niche: solar smart windows that can turn opaque on demand and even power other devices. The study appears in ACS Photonics.

Most existing solar-powered are designed to respond automatically to changing conditions, such as light or heat. But this means that on cool or cloudy days, consumers can't flip a switch and tint the windows for privacy. Also, these devices often operate on a mere fraction of the light energy they are exposed to while the rest gets absorbed by the windows. This heats them up, which can add warmth to a room that the windows are supposed to help keep cool. Jeremy Munday and colleagues wanted to address these limitations.

The researchers created a new smart window by sandwiching a polymer matrix containing microdroplets of liquid crystal materials, and an layer—the type often used in solar cells—between two . When the window is "off," the liquid crystals scatter light, making the glass opaque. The silicon layer absorbs the light and provides the low power needed to align the crystals so light can pass through and make the window transparent when the window is turned "on" by the user. The extra energy that doesn't go toward operating the window is harvested and could be redirected to power other devices, such as lights, TVs or smartphones, the researchers say.

Explore further: 'Smart windows' have potential to keep heat out and save energy

More information: Joseph Murray et al. Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows, ACS Photonics (2016). DOI: 10.1021/acsphotonics.6b00518

Abstract
The ability to electrically control transparency and scattering of light is important for many optoelectronic devices; however, such versatility usually comes with additional unwanted optical absorption and power loss. Here we present a hybrid switchable solar window device based on polymer dispersed liquid crystals (PDLCs) coupled to a semiconducting absorber, which can switch between highly transmissive and highly scattering states while simultaneously generating power. By applying a voltage across the PDLC layer, the device switches from an opaque, light-scattering structure (useful for room light dimming, privacy, and temperature control) to a clear, transparent window. Further, enabled by the very low operating power requirements of the PDLC (<0.8 mW/cm2), we demonstrate that these switchable solar windows have the potential for self-powering with as little as 13 nm of a-Si.

Related Stories

Scientists unveil energy-generating window

October 24, 2013

Scientists in China said Thursday they had designed a "smart" window that can both save and generate energy, and may ultimately reduce heating and cooling costs for buildings.

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...

Self-shading windows switch from clear to opaque

August 11, 2016

A team of researchers at MIT has developed a new way of making windows that can switch from transparent to opaque, potentially saving energy by blocking sunlight on hot days and thus reducing air-conditioning costs. While ...

Researchers develop cheaper 'smart windows'

February 3, 2015

Researchers from the Spanish National Research Council (CSIC) have developed a novel technique that reduces the costs of the 'smart windows', with which the amount of light passing through glass can be controlled. This technology ...

Recommended for you

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...

Investigating the motility of swimming Euglena

March 8, 2019

Some species of Euglenids, a diversified family of aquatic unicellular organisms, can perform large-amplitude, elegantly coordinated body deformations. Although this behavior has been known for centuries, its function is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.