The Milky Way's ancient heart: VISTA finds remains of archaic globular star cluster

October 12, 2016, ESO
This image, captured with the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, shows the central part of the Milky Way. While normally hidden behind obscuring dust, the infrared capabilities of VISTA allow to study the stars close to the galactic center.

Within this field of view astronomers detected several ancient stars, of a type known as RR Lyrae. As RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old, this discovery suggests that the bulging center of the Milky Way likely grew through the merging of primordial star clusters. Credit: ESO/VVV Survey/D. Minniti

Ancient stars, of a type known as RR Lyrae, have been discovered in the center of the Milky Way for the first time, using ESO's infrared VISTA telescope. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old. Their discovery suggests that the bulging center of the Milky Way likely grew through the merging of primordial star clusters. These stars may even be the remains of the most massive and oldest surviving star cluster of the entire Milky Way.

A team led by Dante Minniti (Universidad Andrés Bello, Santiago, Chile) and Rodrigo Contreras Ramos (Instituto Milenio de Astrofísica, Santiago, Chile) used observations from the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, to carefully search the central part of the Milky Way. By observing infrared light, which is less affected by cosmic dust than visible light, and exploiting the excellent conditions at ESO's Paranal Observatory, the team was able to get a clearer view of this region than ever before. They found a dozen ancient RR Lyrae stars at the heart of the Milky Way that were previously unknown.

Our Milky Way has a densely populated centre—a feature common to many galaxies, but unique in that it is close enough to study in depth. This discovery of RR Lyrae stars provides compelling evidence that helps astronomers decide between two main competing theories for how these bulges form.

RR Lyrae stars are typically found in dense globular clusters. They are variable stars, and the brightness of each RR Lyrae star fluctuates regularly. By observing the length of each cycle of brightening and dimming in an RR Lyrae, and also measuring the star's brightness, astronomers can calculate its distance.

Unfortunately, these excellent distance-indicator stars are frequently outshone by younger, brighter stars and in some regions they are hidden by dust. Therefore, locating RR Lyrae stars right in the extremely crowded heart of the Milky Way was not possible until the public VVV survey was carried out using infrared light. Even so, the team described the task of locating the RR Lyrae stars in amongst the crowded throng of brighter stars as "daunting".

Their hard work was rewarded, however, with the identification of a dozen RR Lyrae stars. Their discovery indicate that remnants of ancient globular clusters are scattered within the centre of the Milky Way's bulge.

Rodrigo Contreras Ramos elaborates: "This discovery of RR Lyrae Stars in the centre of the Milky Way has important implications for the formation of galactic nuclei. The evidence supports the scenario in which the bulge was originally made out of a few globular clusters that merged."

The theory that galactic bulges form through the merging of globular clusters is contested by the competing hypothesis that these bulges are actually due to the rapid accretion of gas. The unearthing of these RR Lyrae stars—almost always found in —isvery strong evidence that the Milky Way bulge did in fact form through merging. By extension, all other similar galactic bulges may have formed the same way.

Not only are these stars powerful evidence for an important theory of galactic evolution, they are also likely to be over 10 billion years old—the dim, but dogged survivors of perhaps the oldest and most massive star cluster within the Milky Way.

This research was presented in a paper to appear in The Astrophysical Journal Letters.

Explore further: Starry surprise in the bulge: encounter of a halo passerby

More information: Research paper: www.eso.org/public/archives/re … eso1636/eso1636a.pdf

Related Stories

Starry surprise in the bulge: encounter of a halo passerby

July 22, 2015

A team led by Andrea Kunder from the Leibniz Institute for Astrophysics Potsdam (AIP) measured the velocity of a sample of 100 old RR Lyrae stars thought to reside in the Galactic bulge, the central group of stars found in ...

Cosmic beacons reveal the Milky Way's ancient core

April 22, 2016

An international team of astronomers led by Dr. Andrea Kunder of the Leibniz Institute for Astrophysics Potsdam (AIP) in Germany has discovered that the central 2000 light years within the Milky Way Galaxy hosts an ancient ...

Image: A Hubble sky full of stars

August 8, 2016

Located approximately 22,000 light-years away in the constellation of Musca (The Fly), this tightly packed collection of stars—known as a globular cluster—goes by the name of NGC 4833. This NASA/ESA Hubble Space Telescope ...

Stellar lab in Sagittarius

August 10, 2016

Messier 18 was discovered and catalogued in 1764 by Charles Messier—for whom the Messier Objects are named—during his search for comet-like objects. It lies within the Milky Way, approximately 4600 light-years away in ...

VISTA finds new globular star clusters

October 19, 2011

(PhysOrg.com) -- Two newly discovered globular clusters have been added to the total of just 158 known globular clusters in our Milky Way. They were found in new images from ESO’s VISTA survey telescope as part of the ...

Recommended for you

Engineering cellular function without living cells

March 25, 2019

Genes in living cells are activated – or not – by proteins called transcription factors. The mechanisms by which these proteins activate certain genes and deactivate others play a fundamental role in many biological processes. ...

What ionized the universe?

March 25, 2019

The sparsely distributed hot gas that exists in the space between galaxies, the intergalactic medium, is ionized. The question is, how? Astronomers know that once the early universe expanded and cooled enough, hydrogen (its ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1.6 / 5 (7) Oct 12, 2016
The evidence supports the scenario in which the bulge was originally made out of a few globular clusters that merged.

Yes, but only to the merger maniac, pre-disposed to mis-interpreting the data to fit his fantasy model.

In SQK model, larger stars naturally grow faster from within in crowded regions such as globular clusters and the central core. And these rapidly growing stars grow increasingly unstable, thereby pulsating. And growing rapidly from newly created matter therein, they generally are of relatively low metallicity, since the new matter formed therein is non-metallic.

So, once again SQK theory offers a simple explanation, whereas convention thinking must instead contort. But merger maniacs are practiced contortionists, always exclaiming each new observation to bringing themselves closer to a general understanding, when in reality, it only brings them more confusion.
RNP
4.2 / 5 (5) Oct 12, 2016
@Tuxford
AGAIN, Where is your observational evidence for ANY of this hogwash?
optical
Oct 12, 2016
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.