Deep-space images show violent wind collision in one of the heaviest stars in our galaxy

Deep-space images show violent wind collision in one of the heaviest stars in our galaxy
Eta Carinae's Homunculus nebula. Right: Zooming in by 500 times, the new high-resolution image of the heart of Eta Carinae showing the collision between the two winds. This region is about 100 times larger than the diameter of each of the two stars. The yellow ellipse is the binary orbit. The two red dots indicate the positions of the two stars at the time of observation. Credit: ESO (left) and Gerd Weigelt (right).

A revolutionary study involving researchers from the Max Planck Institute for Radioastronomy (MPIfR) in Germany, Trinity College Dublin in Ireland, and NASA in the USA, has obtained the sharpest ever images of one of the heaviest stars in our Galaxy. The images show Eta Carinae and its violent collision of winds in stunning detail, providing new information on how stars evolve and die.

Eta Carinae is the heavyweight champion in our galaxy, shining with a power equivalent to 5,000,000 Suns. It is surrounded by the beautiful Homunculus nebula, which contains the remains of material ejected in 1843 when Eta Carinae was one of the brightest in the sky.

At the heart of the nebula, another monster companion star is evaporating while it orbits Eta Carinae. They are blowing powerful outflows that are colliding between the two at a speed of 10,000,000 km/h. The violent outflowing winds as seen in Eta Carinae herald the end of a star's life as a supernova, and their study provides scientists with clues about how such stars evolve and die.

The team used a new imaging technique, called interferometry, which combines the light from three large telescopes to obtain extremely sharp images. The new Eta Carinae observations could only have been made with the European Southern Observatory (ESO) telescopes.

The team, led by Professor Gerd Weigelt (MPIfR), combined the infrared light of Eta Carinae employing three movable 1.8-metre telescopes of the ESO's Very Large Telescope Interferometer. Very sharp and detailed images can be obtained when the movable telescopes are located very far apart. Because of that, the final images are as sharp as if they had been observed from a giant 130-metre telescope.

Deep-space images show violent wind collision in one of the heaviest stars in our galaxy
Three of the 1.8-metre telescopes of the Very Large Telescope Interferometer of the European Southern Observatory in Chile. Credit: Gerd Weigelt.

Professor of Astrophysics at Trinity College Dublin, Jose Groh, said: "These are unprecedented images obtained with the ESO telescopes. We were able to zoom in and see the heavyweight champion in our Galaxy like never before. The images provide us with a front-row view of how monster stars interact with each other. The heavier star is winning for now, but the faster companion star may change the fate of the system in the future."

Extreme physical processes occur when the powerful winds collide in Eta Carinae. In the collision region, the hot gas emits strong amounts of light. The astronomers used this light to produce the new images of Eta Carinae. By dispersing and analyzing the light from Eta Carinae, the team could determine how the gas moves in the zone where the winds collide.

Highest resolution image of Eta Carinae
This mosaic shows the Carina Nebula (left part of the image), home of the Eta Carinae star system. This part was observed with the Wide Field Imager on the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory. The middle part shows the direct surrounding of the star system: the Homunculus Nebula, created by the ejected material from the Eta Carinae system. This image was taken with the NACO near-infrared adaptive optics instrument on ESO's Very Large Telescope. The right image shows the innermost part of the system as seen with the Very Large Telescope Interferometer (VLTI). It is the highest resolution image of Eta Carinae ever. Credit: ESO/G. Weigelt

In the past, it was not possible to resolve this violent collision zone, because its extension is too small even for the largest telescopes.

Professor Gerd Weigelt added: "Our dreams came true, because we can now get extremely sharp images in the infrared regime. The ESO interferometer provides us with a unique opportunity to improve our physical understanding of Eta Carinae and many other monster objects."


Explore further

The supernova that wasn't: A tale of three cosmic eruptions

More information: G. Weigelt et al, VLTI-AMBER velocity-resolved aperture-synthesis imagingofCarinae with a spectral resolution of 12 000, Astronomy & Astrophysics (2016). DOI: 10.1051/0004-6361/201628832
Journal information: Astronomy & Astrophysics

Citation: Deep-space images show violent wind collision in one of the heaviest stars in our galaxy (2016, October 19) retrieved 15 September 2019 from https://phys.org/news/2016-10-deep-space-images-violent-collision-heaviest.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
63 shares

Feedback to editors

User comments

Oct 19, 2016
The violent outflowing winds as seen in Eta Carinae herald the end of a star's life as a supernova, and their study provides scientists with clues about how such stars evolve and die.

Yea, information that is so confounding to the merger maniacs that they dare not state it publicly. Instead, they fall back on the lame excuse that somehow they are closer to a general understanding, when again in reality they are simply more confused than ever. Rather, they state the general accepted wisdom that somehow these giant outflows are related to a supernova stage.

The bigger the stars – in general – the more active they are, generating both new matter and new energy from deep therein, ejecting it therefrom. This is an extreme example. No doubt the situation is complicated, with growing gravity influences, interactions with binary companions, etc., all causing different examples in various stages of star evolution.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more