Researchers create 3-D full-color holographic images with nanomaterials

October 13, 2016 by Joe Mccune, Missouri University of Science and Technology
Researchers create 3-D full-color holographic images with nanomaterials
Credit: Missouri University of Science and Technology

Researchers at Missouri University of Science and Technology are creating a new approach to reconstruct 3-D full-color holographic images by using just one layer of nanoscale metallic film. This work has a huge potential to change our daily lives by equipping our cell phones with 3-D floating displays and printing 3-D security marking onto credit cards.

Dr. Xiaodong Yang, an assistant professor in mechanical and aerospace engineering at Missouri S&T, and Dr. Jie Gao, an assistant professor of mechanical and at Missouri S&T, describe their ultrathin full-color holograms in "ACS Nano." And they illustrate their approach by reproducing several full-color holographic images with nanometer-scale aluminum thin films. A nanometer is one billionth of a meter, and some nanomaterials are only a few atoms in size.

The method described in the ACS Nano article "Full-Color Plasmonic Metasurface Holograms" involves the use of ultrathin nanometer-scale metallic films with metasurfaces that can manipulate the wavefront of light. The researchers' metasurface hologram is one 35-nanometer thick aluminum film punctured with tiny rectangular holes of 160 nanometers by 80 nanometers with different orientation angles created by a microfabrication process known as focused ion beam milling.

Experimenting with the interplay of red, green and blue laser light on metasurface structures, the researchers demonstrated "clean and vivid full-color holographic images with high resolution and low noise." The three primary colors—red, green and blue—were produced, and the secondary colors of cyan, magenta, yellow and white also were produced. To illustrate their reconstructed holographic images, they made "CMYW" letters, an apple and a Rubik' cube. They believe the metasurface hologram holds promise for future applications, such as credit card security marking, biomedical imaging, 3-D floating displays and big-data storage.

"By adjusting the orientation angle of the nanoscale slits, we are able to fully tune the phase delay through the slit for realizing the phase modulation within the entire visible color range," says Yang. "In addition, the amplitude modulation is achieved by simply including or not including the slit. Our holograms contain both amplitude and phase modulations at nanometer scale so that high resolution and low noise can be reconstructed."

The researchers created the metasurface hologram by drilling out tiny rectangular slits with various orientation angles through the aluminum thin layer. Under a scanning electron microscope, the hologram looks like a needlepoint pattern.

"Different from the currently existing metasurface holograms which are mostly designed for limited colors, our wavelength-multiplexed method—by encoding additional phase shifts into the holograms and introducing tilted incident angle illumination of laser light—results in the successful reconstruction of almost all visible colors," says Gao, co-author of the paper.

Explore further: High-efficiency color holograms created using a metasurface made of nanoblocks

More information: Weiwei Wan et al. Full-Color Plasmonic Metasurface Holograms, ACS Nano (2016). DOI: 10.1021/acsnano.6b05453

Related Stories

Creating high-resolution full-color moving holograms in 3-D

February 4, 2015

Three-dimensional (3D) movies, which require viewers to wear stereoscopic glasses, have become very popular in recent years. However, the 3D effect produced by the glasses cannot provide perfect depth cues. Furthermore, it ...

Recommended for you

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.