Chemistry students solve decades-old oxidation puzzle

July 4, 2016, University of Amsterdam
Credit: University of Amsterdam

Students at the University of Amsterdam have designed a new catalyst that can render important chemical processes more sustainable. Their catalyst can create selective peroxide-like reagents literally from thin air and uses those to oxidise alcohols to carbonyl compounds in a dual-action mechanism. The results have just been published online by Chemistry: A European Journal.

Thierry Slot, a master student at the Research Priority Area Sustainable Chemistry, has succeeded in solving a thorny problem in organic chemistry: the selective catalytic oxidation of activated alcohols with molecular (air). Working with second-year bachelor students Peter Jungbacker and Dylan van Noordenne, Slot designed and synthesised a dual-action solid catalyst that facilitates a cascade of oxygen activation followed by alcohol dehydrogenation.

The is made mostly of carbon, with a sprinkling of nitrogen, oxygen, and cobalt, iron or copper. Importantly, it contains no noble metals such as platinum or palladium. Replacing rare and costly noble metals with catalysts based on first-row transition metals is a key theme of the UvA's Research Priority Area Sustainable Chemistry.

Benzylic and allylic alcohols are important intermediates in fine-chemical synthesis, as well as in the agrochemicals and flavours and fragrances sectors. Oxidising these alcohols to aldehydes and ketones is tricky, because other parts of the molecule can also be oxidised along the way. This is especially true if you use or air, because activating oxygen requires high temperatures, which can set off side reactions. There are two ways around this problem: use a platinum catalyst, or use an activated oxidant such as a peroxide molecule. But platinum is extremely rare and expensive, and peroxides are hazardous reagents, and also more expensive than air.

The Sustainable Chemistry team designed a new catalyst based on a new type of nitrogen-doped carbon that was developed in the group a few months ago. This material can "donate" electrons to oxygen molecules, lengthening the O–O bond and creating a sort of "peroxide" literally from thin air. Here and there on the active surface, the team placed metal oxide nanoparticles that can catalyse the organic oxidation of alcohols. This combination creates doughnut-shaped zones around the particles where both the oxygen activation and alcohol oxidation can occur (see figure above). Indeed, this "active doughnut" concept has implications for several other bifunctional solid catalysts.

The project was designed and supervised by Prof. Gadi Rothenberg and Dr. David Eisenberg. Rothenberg has a long history with this reaction: "My PhD project focused on allylic and benzylic oxidation catalysis. We tried working with oxygen, but the selectivity was always low, so at the end I ran most of my experiments with peroxide reagents. Now, twenty years later, we've finally solved the problem using these special materials that can activate oxygen from the air selectively under mild conditions".

The results have been published in Chem. Eur. J. as a communication. Slot is now working on expanding the concept to other oxidation reactions, in collaboration with exchange students from the Holland Research School of Molecular Chemistry (HRSMC) excellence master program.

Explore further: Molecular fuel cell catalysts hold promise for efficient energy storage

More information: Thierry K. Slot et al. Cooperative catalysis for selective alcohol oxidation with molecular oxygen, Chemistry - A European Journal (2016). DOI: 10.1002/chem.201602964

Related Stories

Replacing noble metals with nickel

June 7, 2016

Chemical synthesis can transform commodity chemicals into complex life-saving drugs, household products, or advanced materials. But this "alchemy" can also produce huge amounts of toxic waste or require harsh and dangerous ...

Recommended for you

Researchers discover new material to help power electronics

March 18, 2019

Electronics rule our world, but electrons rule our electronics. A research team at The Ohio State University has discovered a way to simplify how electronic devices use those electrons—using a material that can serve dual ...

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.