Butterflies' diet impacts evolution of traits

July 14, 2016, University of Minnesota
Credit: University of Minnesota / unsplash.com/photos/FF85L4v0woM

Why do some organisms within a single species have many offspring, while others have relatively few? A new study led by University of Minnesota researcher Emilie Snell-Rood finds that access to some nutrients may be a star player in shaping traits related to fitness such as fecundity and eye size over the long term. Given drastic increases in the availability of many nutrients due to the widespread use of fertilizers and road salts, the finding has important implications for agriculture and ecology.

Snell-Rood and colleagues wanted to find out if different types of nutrients played a role in shaping the evolutionary history of five closely-related families of butterflies. "It's really hard to quantify diet," she says, noting that prior studies have provided coarse comparisons across animals—for instance, carnivores versus herbivores. "We wanted to test the idea that nutrition shapes life history evolution at a finer level."

To do that, researchers correlated the nutrition of 96 different butterfly species' food with a broad range of phenotypic features such as eye size. The researchers looked at three elements in the butterflies' diets: nitrogen, sodium, and phosphorus. Nitrogen is a necessary nutrient for protein building, sodium is critical for proper functioning of muscle and nervous systems, and phosphorous is thought to be important for growth rate.

They found that butterfly species with nitrogen-rich diets tended to have larger numbers of eggs, though the eggs themselves were relatively smaller. They also found that diets high in both nitrogen and sodium probably led to the evolution of larger eyes. In butterflies, the visual system is important for finding both food and mates, such that larger eyed individuals have an evolutionary advantage.

Human activity impacts the balance of in the environment. For example, heavy farm fertilization and increasing atmospheric deposition are both driving up nitrogen concentration in the soil, while road salts are similarly increasing in some places. "We are changing evolutionary selection pressures on traits," said Snell-Rood. "Pests might be evolving to be more fecund because, on average, their diet is of higher quality."

Emilie Snell-Rood is an associate professor in the College of Biological Sciences at the University of Minnesota. The paper was published in the Proceedings of the Royal Society B.

Explore further: Study investigates impact of road salt on butterfly development

More information: Eli M. Swanson et al. Nutrition shapes life-history evolution across species, Proceedings of the Royal Society B: Biological Sciences (2016). DOI: 10.1098/rspb.2015.2764

Related Stories

Butterflies illustrate the effects of environmental change

July 24, 2014

Changes in butterfly fauna are yielding surprising insights into our changing environment. The effects of nitrogen from fertilizer or precipitation on the food plants and microclimate of caterpillars have a significant impact ...

Butterflies' wing patterns change with the seasons

July 7, 2016

Tropical butterflies adapt to their environment to improve their chances of survival. The changes are triggered by hormone signals that transmit information about temperature to the butterflies' tissues. Biologist Ana Rita ...

How the butterfly got its spots

June 15, 2016

By tweaking just one or two genes, Cornell University researchers have altered the patterns on a butterfly's wings. It's not just a new art form, but a major clue to understanding how the butterflies have evolved, and perhaps ...

Maternal experience brings an evolutionary advantage

September 22, 2015

Using a species of butterfly as an example, researchers from the Department of Environmental Sciences at the University of Basel have demonstrated how insects adapt their offspring to changing environmental conditions. The ...

Recommended for you

Scientist launches hunt for Loch Ness 'monster DNA'

June 17, 2018

Tales of a giant creature lurking beneath the murky waves of Loch Ness have been around for more than 1,500 years—and one academic hopes the marvels of modern science can finally unravel the mystery.

Research shows diet shift of beluga whales in Alaska inlet

June 16, 2018

Beluga whales in Alaska's Cook Inlet may have changed their diet over five decades from saltwater prey to fish and crustaceans influenced by freshwater, according to a study by University of Alaska Fairbanks researchers.

Flatworms found to win most battles with harvestmen

June 15, 2018

A trio of researchers with Universidade de São Paulo has documented evidence of flatworms and harvestmen engaging in battle in the forests of Brazil. In their paper published in the Journal of Zoology, M. S. Silva. R. H. ...

eDNA analysis—a key to uncovering rare marine species

June 15, 2018

The days of searching the oceans around the world to find and study rare and endangered marine animals are not over. However, an emerging tool that can be used with just a sample of seawater may help scientists learn more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.