Switzerland winds up superconductivity

June 8, 2016
Switzerland winds up superconductivity
Details of the innovative superconducting coil, conceived and manufactured by researchers from UNIGE and Bruker BioSpin. Credit: L. Windels – UNIGE

The unusual electronic properties of some superconducting materials permit lossless and dense electrical currents at very low temperatures, even in high magnetic fields. Conductors made of these materials are thus ideal for winding coils to generate very high magnetic fields, which are essential for a number of applications like magnetic medical imaging, magnetic resonance spectroscopy for the analysis of complex molecules or even accelerator magnets. To generate ever-higher magnetic fields, physicists at the University of Geneva (UNIGE) and an R&D team of Bruker BioSpin in Fällanden (ZH), both in Switzerland, started a collaboration in 2012, which was partially funded by the Swiss National Science Foundation (SNSF). Together, they successfully developed and tested the first superconducting coil able to reach a magnetic field of 25 Tesla. A first in Europe.

Today, the magnets used in nuclear magnetic resonance (NMR) and medical magnetic resonance imaging (MRI) represent the primary commercial applications of superconductivity. NMR, used mainly in the chemical and pharmaceutical industry, allows discovering new molecules, studying the structure of proteins or analyzing food content. It is essential for drug development or the quality control of chemical compounds. Modern measurement instruments available on the market today and manufactured particularly by Bruker BioSpin, world leader in this field, are able to produce magnetic fields of up to 23.5 Tesla. This limit is related to the physical properties of conventional superconducting materials used to generate the magnetic field. "However, there is a need for more powerful spectrometers in the biomedical field", says Carmine Senatore, professor in the Department of Quantum Matter Physics in the Faculty of Science at UNIGE. "Indeed, the stronger the magnetic field, the better the resolution of molecular structures. The goal of our collaboration was therefore to reach the new record for the magnetic field intensity of 25 Tesla with newly available superconducting , which was a real scientific and technological challenge. It is also an important milestone in the introduction of crucial technologies for the development of commercial ultra-high-field NMR products."

To create the of 25 Tesla, the researchers combined a Bruker laboratory magnet producing 21 Tesla, already installed at UNIGE, with an innovative superconducting insert coil increasing the field by an additional 4 Tesla; so in total, a field well beyond the 23.5 Tesla reachable with conventional superconducting coils could be generated. In order to operate, the coil must be cooled with liquid helium to a temperature of −269°C (4.2 K). The superconductor chosen to achieve such a field is a copper-oxide-based ceramic, YBCO. A one-micrometer thick layer of superconductor covers a thin steel tape which is then wound onto a cylindrical support to obtain the coil. 140 meters of 3 mm wide tape were necessary to produce the superconducting insert coil. In the preliminary design phase, many types of commercially available superconducting tapes were systematically studied and tested in order to understand and control their electrical, magnetic, mechanical and thermal properties. The challenge consisted of finding a conductor with the right balance of properties: it must carry high currents without dissipation, endure the winding process without degradation and withstand the magnetically generated mechanical stresses. This has been accomplished.

"In addition to the achievable higher resolution, which will certainly stimulate the scientific community and the network of institutions working at the forefront of molecular science, the use of YBCO will also simplify the operation of NMR spectrometers by using less complicated cooling systems", explains Riccardo Tediosi, manager of Bruker BioSpin's Superconducting Technologies group.

This first 25 Tesla coil will be a central and integral part of the laboratory of applied superconductivity at UNIGE. Although the coil is not a commercial product, the know-how developed for its design and manufacture represents an invaluable contribution to commercial NMR systems based on this technology. This project demonstrates how the Swiss network of research institutes and corporations active in this field in Switzerland are able to master such technologies. In the near future, this record magnet will be used for basic and fundamental research while scientists and engineers will aim at even more challenging goals: all-superconducting generating stable and homogeneous magnetic fields beyond 30 Tesla.

Explore further: Superconducting magnet generates world’s highest magnetic field at 24T

Related Stories

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Superconductor survives ultra-high magnetic field

November 12, 2015

Physicists from the universities of Groningen and Nijmegen (the Netherlands) and Hong Kong have discovered that transistors made of ultrathin layers molybdenum disulfide (MoS2) are not only superconducting at low temperatures ...

HFML sets world record with a new 38 tesla magnet

March 31, 2014

The High Field Magnet Laboratory (HFML) at the Radboud University Nijmegen set a new world record today: the generation of a continuous magnetic field of 38 tesla in a resistive (i.e. non-superconducting) magnet. Strong magnetic ...

New World Record For Superconducting Magnet Set

August 7, 2007

A collaboration between the National High Magnetic Field Laboratory at Florida State University and industry partner SuperPower Inc. has led to a new world record for a magnetic field created by a superconducting magnet.

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.