Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015
The Racetrack Model Coil test magnet Credit: CERN

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole magnet of this configuration.

The Racetrack Model Coil (RMC) is one of several demonstration test magnets being built by the group to understand and develop new technologies, which are vital for future accelerators.

The shorter magnets are just 1 to 2 metres in length, compared to the 5-7 metre long ones needed for the High-Luminosity LHC.

The tests are needed to prove the feasibility of creating magnetic fields of up to 16 tesla, which are built into the designs of future accelerators.

"The present LHC dipoles have a nominal field of 8.3T and we are designing accelerators which need magnets to produce a field of around 16T – almost twice as much," says Juan Carlos Perez, an engineer at CERN and the project leader for the RMC.

High-field magnets are crucial to building higher energy particle accelerators. High magnetic fields are needed to steer a beam in its orbit – in the case of dipoles - or to squeeze the beams before they collide within the experiments, which is the case for high-gradient quadrupoles.

The LHC uses niobium-titanium superconducting magnets to both bend and focus proton beams as they race around the LHC. But the RMC uses a different superconducting material, niobium-tin, which can reach much higher magnetic fields, despite its brittle nature.

The world record is a step forward in the demonstration of the technology for the High-Luminosity LHC project, and a major milestone for the Future Circular Collider design study.

"It is an excellent result, although we should not forget that this is a relatively small magnet, a technology demonstrator with no bore through the centre for the beam," says Luca Bottura, Head of CERN's Magnet Group. "There is still a way to go before 16 Tesla magnets can be used in an accelerator. Still, this is a very important step towards them."

The RMC is also using wires and cables of the same class as those being used to build FRESCA2, a 13T dipole magnet with a 100mm aperture that will be used to upgrade the CERN cable test facility FRESCA. FRESCA2 coils are currently under construction and will be ready for testing by summer 2016.

Such fields are only possible thanks to new materials and technologies, and also close relationships between several physics communities. The team worked closely with other European and overseas research and development programmes to break the technology barriers.

Explore further: Test magnet reaches 13.5 tesla – a new CERN record

Related Stories

Test magnet reaches 13.5 tesla – a new CERN record

November 18, 2013

The Short Model Coil (SMC) programme tests new magnet technologies with magnets about 30 centimetres long. The technology developed in the SMC will eventually help engineers build more powerful magnets for the Large Hadron ...

New magnet at Fermilab achieves high-field milestone

April 6, 2015

Last month, a new superconducting magnet developed and fabricated at Fermilab reached its design field of 11.5 Tesla at a temperature nearly as cold as outer space. It is the first successful twin-aperture accelerator magnet ...

CERN's Large Hadron Collider gears up for run two

December 12, 2014

CERN announced today at the 174th session of the CERN Council that the Large Hadron Collider (LHC) is gearing up for its second three-year run. The LHC is the largest and most powerful particle accelerator in the world and ...

CERN's two-year shutdown drawing to a close

February 13, 2015

It's almost two years to the day since the team in the CERN Control Centre switched off the beams in the Large Hadron Collider (LHC) at 7.24am on 14 February 2013, marking the end of the accelerator's first three-year run. ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

The stacked color sensor

November 16, 2017

Red-sensitive, blue-sensitive and green-sensitive color sensors stacked on top of each other instead of being lined up in a mosaic pattern – this principle could allow image sensors with unprecedented resolution and sensitivity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.