Microbial community dynamics dominate greenhouse gas production in thawing permafrost

June 22, 2016, US Department of Energy
An international team examined microbial community dynamics at a site in Sweden where portions of the site are frozen permafrost and other areas are thawed (as shown here). They found that a particular microbe dominates the recently thawed areas, providing insights to improve climate predictions. Credit: Udo Schröter (Flickr) via a Creative Commons License

Northern permafrost ecosystems are changing rapidly, with rising temperatures causing many previously frozen environments to become wetlands such as fens. As permafrost thaws, the trapped organic carbon is accessible to microbial decomposition, which can release greenhouse gases (GHGs) to the atmosphere. A team led by the University of Arizona examined microbial community dynamics at a site in Sweden where portions of the site are frozen permafrost and other areas are thawed. They found that a single microbe dominated recently thawed sites, with its relative abundance strongly correlating with the magnitude and specific type of methane produced at any given site.

The results represent a significant advance in understanding and accurately modeling the critical biogeochemical processes of microbes in permafrost. The findings will improve predictions of climate change impacts on these delicate ecosystems and of potential consequences to the atmosphere. Finding the striking dominance of a single microbial species in mediating the large-scale carbon cycle process is highly unusual and provides an opportunity to more effectively track and predict the impacts of across an entire region. Incorporating the datasets will facilitate development of ecosystem-scale models of the processes.

Understanding of that can release (GHGs) is limited, especially the specific nature of processes that affect rates of carbon decomposition and the balance of released carbon dioxide (CO2) versus methane (CH4). Because CH4 is a much more potent GHG in the short term, understanding the microbial mechanisms driving the large-scale processes of both gases would significantly improve the ability to predict possible . An international, interdisciplinary team of researchers led by the University of Arizona has examined microbial community dynamics at a site in northern Sweden located in a natural temperature gradient. Northern portions of this site are frozen permafrost, while southern areas are thawed wetland fens.

Over several years, the team (1) measured CO2 and CH4 production along the gradient, (2) examined isotopic signatures of the gases characteristic of distinct microbial processes, and (3) correlated the data with measured shifts in microbial community composition and abundance. Only small amounts of GHGs were released from frozen permafrost, but progressively more were released, predominantly CH4, with increasing temperatures and thawing. The team linked these observations with extensive shifts in microbial community composition, revealing a reproducible succession pattern of different types of CH4-producing microbes (methanogens) across the thaw gradient. Surprisingly, a single methanogen species, Candidatus Methanoflorens stordalenmirensis, was dominant in recently thawed sites, with its relative abundance strongly correlating with the magnitude and specific type of CH4 produced at any given site.

Explore further: Carbon dioxide biggest player in thawing permafrost

More information: Carmody K. McCalley et al. Methane dynamics regulated by microbial community response to permafrost thaw, Nature (2014). DOI: 10.1038/nature13798

Related Stories

Carbon dioxide biggest player in thawing permafrost

June 13, 2016

Carbon dioxide emissions from dry and oxygen-rich environments are likely to play a much greater role in controlling future rates of climate change caused by permafrost thaw than rates of methane release from oxygen-poor ...

Recommended for you

Top nitrogen researchers imagine world beyond fossil fuels

May 25, 2018

Freeways choked with traffic, supermarkets laden with fertilizer-grown stock from distance fields and virtually everything we touch derived from petroleum-based plastics. It's hard to imagine life beyond our fossil-fueled ...

Climate change may lead to bigger atmospheric rivers

May 25, 2018

A new NASA-led study shows that climate change is likely to intensify extreme weather events known as atmospheric rivers across most of the globe by the end of this century, while slightly reducing their number.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.