New material kills E. coli bacteria in 30 seconds

June 6, 2016, Agency for Science, Technology and Research (A*STAR), Singapore
New material kills E. coli bacteria in 30 seconds
A microscopic image of the E. coli bacteria after it has been destroyed by the antimicrobial material. Credit: Institute of Bioengineering and Nanotechnology

Every day, we are exposed to millions of harmful bacteria that can cause infectious diseases, such as the E. coli bacteria. Now, researchers at the Institute of Bioengineering and Nanotechnology (IBN) of Agency for Science, Technology and Research (A*STAR), Singapore, have developed a new material that can kill the E. coli bacteria within 30 seconds. This finding has been published in the peer-reviewed journal, Small.

"The global threat of has given rise to the urgent need for new materials that can kill and prevent the growth of . Our new antimicrobial material could be used in consumer and to support good personal hygiene practices and prevent the spread of ," said IBN Executive Director, Professor Jackie Y. Ying.

Triclosan, a common ingredient found in many products such as toothpastes, soaps and detergents to reduce or prevent bacterial infections, has been linked to making resistant to antibiotics and . The European Union has restricted the use of triclosan in cosmetics, and the U.S. Food and Drug Administration is conducting an on-going review of this ingredient.

Driven by the need to find a more suitable alternative, IBN Group Leader Dr Yugen Zhang and his team synthesized a chemical compound made up of molecules linked together in a chain. Called imidazolium oligomers, this material can kill 99.7% of the E. coli bacteria within 30 seconds aided by its chain-like structure, which helps to penetrate the cell membrane and destroy the bacteria. In contrast, antibiotics only kill the bacteria without destroying the cell membrane. Leaving the cell structure intact allows new antibiotic-resistant bacteria to grow.

"Our unique material can kill bacteria rapidly and inhibit the development of antibiotic-resistant bacteria. Computational chemistry studies supported our experimental findings that the chain-like compound works by attacking the . This material is also safe for use because it carries a positive charge that targets the more negatively charged bacteria, without destroying red blood cells," said Dr Zhang.

The imidazolium oligomers come in the form of a white powder that is soluble in water. The researchers also found that once this was dissolved in alcohol, it formed gels spontaneously. This material could be incorporated in alcoholic sprays that are used for sterilization in hospitals or homes.

E. coli is a type of bacteria found in the intestines of humans and animals, and some strains can cause severe diarrhea, abdominal pain and fever. Such infection is contagious and can spread through contaminated food or water, or from contact with people or animals. Good hygiene practices and proper food handling can prevent E. coli infections.

Besides E. coli, IBN's material was also tested against other common strains of antibiotic-resistant bacteria and fungi, such as Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. These pathogens can cause conditions ranging from skin infections to pneumonia and toxic shock syndrome. Our material was able to kill 99.9% of these microbes within two minutes.

IBN's ultrafast bacteria-killing material could therefore be a potent new weapon against drug-resistant microbes.

Explore further: Answer to antibiotic-resistant infections could already be on the market

More information: Siti Nurhanna Riduan et al. Ultrafast Killing and Self-Gelling Antimicrobial Imidazolium Oligomers, Small (2016). DOI: 10.1002/smll.201600006

Related Stories

E.coli 'anchors' provide novel way to hijack superbugs

May 16, 2016

Australian scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant "superbugs". The researchers have uncovered what may ...

Recommended for you

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.