Getting the most out of natural gas

May 24, 2016 by Fabio Bergamin, ETH Zurich
Natural gas can be used as a base material for complex chemical compounds – pictured here is a natural gas pipeline. Credit: Colourbox

ETH scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-products.

The use of as a raw material for chemicals production is a goal pursued intensively in chemical research. Scientists working under Javier Pérez-Ramírez, Professor of Catalysis Engineering, have now succeeded in optimising a process which enables natural gas constituents to be upgraded into higher-value chemicals. "We take a molecule of the natural gas constituent (CH4) and replace one of its hydrogen atoms with a bromine atom to form (CH3Br)," explains Pérez-Ramírez. "The latter can be used as a base material in the chemical industry for the production of fuels and a range of chemicals, such as polymers and pharmaceuticals."

Complete bromine recycling

When methyl bromide is transformed into fuels and chemicals, bromine is released in the form of hydrogen bromide (HBr). "The beauty of our reaction is that it enables the bromine from hydrogen bromide to be embedded back into methyl bromide, using oxygen. In this way, the bromine cycle is closed, and no bromine is lost", says Pérez-Ramírez.

The oxybromination of methane, as the reaction is called, can already be carried out today using catalysts (reaction accelerators). However, they typically generate large quantities of unwanted products. The ETH catalysis specialists therefore looked for a way to improve the reaction's selectivity. In a multi-step selection process, they investigated a large number of different catalyst materials. Vanadium phosphate proved to be the most suitable.

Video: ETH Zurich / Chair of Catalysis Engineering

More efficient than via syngas

Vanadium phosphate is a relatively mild oxidising catalyst, and this is exactly what chemists are seeking in the oxybromination of methane. On the one hand, the catalyst is sufficiently strong to allow hydrogen bromide to react with oxygen at the catalyst's surface. On the other hand, the catalytic action of vanadium phosphate is too weak to oxidise the unwanted methane and the brominated reaction products.

"Our method makes it possible to brominate methane in a single step at atmospheric pressure and at temperatures below 500 degrees Celsius. This makes it an attractive route for industry," says Vladimir Paunovi?, a doctoral student in Pérez-Ramírez's group. Currently, methane is industrially converted into higher grade chemicals using syngas as an intermediate. However, this method is extremely energy-intensive as it requires high pressures (up to 30 bar) and high temperatures (up to 1,000 degrees).

Long catalyst lifetime

The is exceptionally stable. "Bromine is a halogen. Halogens react very readily with methane, which is desirable in this case, but they also attack the catalyst," explains Paunovi?. "Our resists the corrosive reaction environment, which is essential for its potential industrial application."

The reason why chemical researchers are striving to make greater use of natural gas as a raw material for synthesis is primarily because it occurs in huge quantities. "We are currently experiencing a boom in natural gas exploration. If you include unconventional, hard to access reservoirs, such as shale gas or , estimates indicate that gas deposits will last for at least 100 years," says Pérez-Ramírez. Today, the raw material typically used for chemical products is oil. Oil deposits are in decline, however, and chemists see natural gas as a suitable alternative.

Explore further: Using methane rather than flaring it

More information: Vladimir Paunović et al, Catalyst design for natural-gas upgrading through oxybromination chemistry, Nature Chemistry (2016). DOI: 10.1038/nchem.2522

Related Stories

Using methane rather than flaring it

April 14, 2016

Chemists at ETH Zurich and the Paul Scherrer Institute have found a new, direct way to convert gaseous methane into liquid methanol. This offers industry the interesting prospect of using the gas, rather than simply burning ...

From waste stream to sustainable fuel

October 6, 2015

Many industrial processes produce large quantities of waste water containing all kinds of chemicals. These contaminated water streams can be used to produce hydrogen gas with help of catalysts without vaporizing the water. ...

Cost-effective catalyst converts CO2 into natural gas

September 2, 2015

A discovery made in Leiden helps not only to make natural gas from CO2 but also to store renewable energy. Research by Professor Marc Koper and PhD student Jing Shen shows how this process can be implemented in a cost-effective ...

Recommended for you

A protein that self-replicates

February 22, 2018

ETH scientists have been able to prove that a protein structure widespread in nature – the amyloid – is theoretically capable of multiplying itself. This makes it a potential predecessor to molecules that are regarded ...

Newly designed molecule binds nitrogen

February 22, 2018

Wheat, millet and maize all need nitrogen to grow. Fertilisers therefore contain large amounts of nitrogenous compounds, which are usually synthesised by converting nitrogen to ammonia in the industrial Haber-Bosch process, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

OdinsAcolyte
5 / 5 (1) May 24, 2016
Excellent. Hydrocarbons are useful even if you never burned them. Without them we have no modern materials or lifestyles we have come to love and appreciate. There shall always be a petroleum industry for energy and for polymers, chemicals, pharmaceuticals, fertilizers, plastic...

And fuel cells. Natural gas is the thing for that. Good work fellows!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.