Water on the moon?

May 30, 2016, Harvard University
Water on the moon?
This illustration shows a promising new technique for locating water on the Moon. Galactic cosmic rays (GCR) that penetrate the lunar surface, when encountering a layer with material containing hydrogen atoms (like water), trigger the ejection of protons (red spheres) that can be detected by the appropriate instrumentation in an orbiting satellite. Credit: Schwadron et al. 2016

Prior to the Apollo missions to the moon, scientists speculated that volatiles - including water - may have accumulated in permanently shaded regions at the poles. Then the Apollo era brought the return of lunar samples, enabling real measurements: They found none of the water-bearing minerals common on Earth. Over the past ten years, however, several developments have reinvigorated the discussion. In particular, new analyses of volcanic glasses in the sample returns have inferred the presence of water in the moon's interior. Meanwhile, several new lunar missions have been launched. The ones using neutron spectroscopy to search for water have come up with mixed conclusions, but those using infrared spectroscopy seemed to reach unambiguous identification of water on the lunar surface, although in disagreement with the neutron experiments.

CfA astronomers Anthony Case and Justin Kasper were members of a team of astronomers who propose a new method to detect hydrated material on the moon - like water - by measuring the strength of protons coming from the lunar surface with the CRaTer instrument (Cosmic Ray Telescope for the Effects of Radiation) on the Lunar Reconnaissance Orbiter, a NASA robotic orbiter launched in 2009. Cosmic rays from the galaxy, when striking the lunar surface, will knock protons out of material on the surface which can be detected by the CRaTER instrument. The team completed a set of laboratory tests using high energy particle accelerators to simulate the effects of on materials containing hydrogen, and found that the presence of hydrogen - in water for example – actually suppresses the overall proton emission. The implication is that if water is present near the poles of the moon, a scan across the should show a clear reduction in numbers of protons as it crosses the poles.

Actually, the CRaTER scans found an increase in the proton emission at the poles. The scientists soon realized that there were some effects, originally thought to be negligible, that were responsible. Protons and neutrons, released from material below the surface down to about ten centimeters, will collide with other atoms and produce the emission of secondary particles. The enhancement of these secondary is indeed consistent with the presence of hydrogen. But it turns out that there are other possible solutions as well, and the team is continuing to investigate them. Meanwhile their current paper shows that the technique of using CRaTER measurements to search for water is at least in principle possible, and when the remaining issues are resolved, the techniques could be used in other missions to probe other solar system bodies.

Explore further: Digging deep in search of water on the moon

More information: N.A. Schwadron et al. Signatures of volatiles in the lunar proton albedo, Icarus (2016). DOI: 10.1016/j.icarus.2015.12.003

Related Stories

Digging deep in search of water on the moon

May 19, 2014

One of the main aims of the Apollo missions of the 1960s was to determine whether the moon had any water on it. If man were to build a colony on the moon, having water present would make living there easier.

Characterizing the Moon's radiation environment

April 9, 2013

The radiation environment near the Moon could be damaging to humans and electronics on future missions. To characterize this potentially hazardous environment, the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) ...

Metamorphosis of moon's water ice explained

June 19, 2013

Using data gathered by NASA's Lunar Reconnaissance Orbiter (LRO) mission, scientists believe they have solved a mystery from one of the solar system's coldest regions—a permanently shadowed crater on the moon. They have ...

Recommended for you

Climbing the ladder to life detection

June 25, 2018

In the past two decades, NASA spacecraft have identified potentially habitable environments throughout the solar system and beyond. Spacecraft on Mars have found evidence that lakes and streams once covered the planet, protected ...

Planetary nebula lasers

June 25, 2018

Astronomical masers (the radio wavelength analogs of lasers) were first identified in space over fifty years ago and have since been seen in many locations; astronomical lasers have since been seen as well. Some of the most ...

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.