Radical route for the synthesis of chiral molecules

April 14, 2016, Institute of Chemical Research of Catalonia
Prof. Paolo Melchiorre (left), Dr. John J. Murphy, Dr. David Bastida and Dr. Suva Pavia at the Institute of Chemical Research of Catalonia. Credit: Credit: Institute of Chemical Research of Catalonia

The research group of Prof. Paolo Melchiorre at ICIQ has developed a new methodology for the selective formation of chiral molecules. The work, that has been published in Nature, combines two strategies which require very mild reaction conditions—enantioselective iminium ion chemistry and photoredox catalysis—to set quaternary carbon stereocentres with high enantioselectivity.

Chiral molecules are molecules in which a carbon atom is attached to four different substituents (which is called a quaternary stereocenter when all the four substituents are carbon-centred). If a molecule is chiral it exists in two enantiomeric forms (one is the mirror image of the other and they cannot superimpose). Chiral molecules have numerous applications, especially in the field of biochemistry as they were essential in the origin of life. As an example, the aminoacids that form the proteins in our body are chiral molecules but only one of the two possible enantiomers is present in the proteins. Many of the biological processes occurring in our body involve chiral molecules, which explains the fact that most of the drugs we use are chiral. Taking the example of chiral drugs, it may occur either that both enantiomers have a similar effect or that one has a therapeutic effect while the other is dangerous, as it happened with the famous case of thalidomide. Therefore, one of the main goals in the synthesis of drugs is the design and development of reactions for the selective synthesis of the desired enantiomer.

In this context, the work developed by Prof. Melchiorre group represents a breakthrough in the synthesis of chiral molecules as it manages to perform the selective synthesis of the desired molecule via a new radical route that combines the action of a photocatalyst activated by with a chiral organic catalyst.

"Key to success was the design of a chiral organic catalyst which drives the stereoselective interception of photochemically-generated carbon-centred radicals. This catalyst may provide further opportunities to stereoselectively generate quaternary stereocenters that cannot be forged by using traditional polar reactivity. We are currently exploring these possibilities" -says professor Melchiorre.

The synthesis of usually requires the presence of organometallic compounds and careful control of the reaction conditions. By contrast, the reaction developed at ICIQ can be performed under mild conditions, contributing to the sustainability of the process. Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. By developing an innovative methodology, the group of professor Melchiorre connects these two fields or research to provide a new framework for conceiving enantioselective organocatalytic processes in which the light has a key role as an energy source.

"Combining the potential of metal-free enantioselective organocatalysis and visible light photocatalysis can significantly advance the development of a more responsible and sustainable stereoselective chemistry while strengthening the chemistry toolbox to better face the challenges of modern organic chemistry" -adds Prof. Melchiorre.

Explore further: New method of producing stereoisomers developed

More information: John J. Murphy et al. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals, Nature (2016). DOI: 10.1038/nature17438

Related Stories

Nature's mirror—the code for chirality

February 8, 2016

How information is transferred from biological molecules to crystalline surfaces could pave the way for the development of new drugs and other synthetic materials.

High-yield selective synthesis of specific molecules

July 6, 2012

Organic chemists seek synthesis reactions that produce high yields of very pure products. European researchers have developed novel synthetic reactions for a class of compounds particularly relevant to potential drug therapies.

Recommended for you

Study describes cellular factories in greater detail

October 22, 2018

Many important natural products such as antibiotics, immunosuppressants and cancer drugs are derived from microorganisms. These natural products are often small proteins or peptides generated in the cell by NRPS enzymes similar ...

New algorithm can more quickly predict LED materials

October 22, 2018

Researchers from the University of Houston have devised a new machine learning algorithm that is efficient enough to run on a personal computer and predict the properties of more than 100,000 compounds in search of those ...

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.