Study suggests commercial bumble bee industry amplified a fungal pathogen of bees

April 4, 2016, University of Illinois at Urbana-Champaign
Several species of bumble bee, including Bombus occidentalis, pictured, are experiencing steep population declines. Credit: USDA Agricultural Research Service

Scientists hoping to explain widespread declines in wild bumble bee populations have conducted the first long-term genetic study of Nosema bombi, a key fungal pathogen of honey bees and bumble bees.

Their study, reported in the Proceedings of the National Academy of Sciences, found that N. bombi was present in the U.S. as early as 1980, well before several species of wild bumble bees started to go missing across the country. The study also found that N. bombi infections in large-scale commercial bumble bee pollination operations coincided with infections and declines in wild bumble bees.

"We used molecular techniques to screen thousands of bumble bees to track Nosema infections before and after the bees began to decline," said University of Illinois entomology professor Sydney Cameron, who led the new research. "We wanted to test the idea floating about for a couple of decades that Nosema bombi prevalence in declining populations is connected with commercial production of bumble bees for pollination."

The study included an analysis of DNA sequence variation in N. bombi over time and in different geographical locations. For historical evidence of , the team turned to bee specimens in natural history collections in North America and Europe.

"Our results support the hypothesis that Nosema is a key player in U.S. bumble bee declines," Cameron said. "They also indicate a temporal connection between historical infections in wild bumble bee populations and the late 1990s Nosema-induced collapse of commercial production of Bombus occidentalis in North America."

The researchers found parallels between the use of bumble bees to pollinate greenhouse tomatoes in the Pacific West and Eastern Canada and declines in wild bumble bee species that inhabit those same regions. The N. bombi-related declines in wild bees occurred shortly after many commercial bumble bee operations collapsed as a result of N. bombi infections, Cameron said.

"These associations support the hypothesis that Nosema escaped into wild populations from heavily infected commercial colonies, at least during the earlier years of bumble bee domestication in the U.S.," she said.

While the new study is not a definitive explanation of the widespread bumble bee losses, which are likely the result of many factors, Cameron said, it challenges a popular hypothesis about the sudden declines of wild bumblebees in the early 1990s. That hypothesis - that a newly arrived N. bombi strain from Europe caused the bumble bee declines - was an educated guess, since wild bees and commercial bees suffered devastating losses linked to N. bombi infections at about the same time, in the early 1990s, Cameron said.

"But we found low genetic diversity and very few genetic differences between European and U.S. Nosema strains," she said. "And we found no evidence to support the arrival of an unusual strain of N. bombi in North America in the 1990s."

The coincidence of N. bombi infections and losses of bumblebees in wild and commercial populations suggests the fungus is a key player in bumble bee declines, Cameron said. "But we still don't know whether the fungus is becoming more virulent or the - already stressed from habitat loss and degradation and other infections - are becoming more susceptible to Nosema."

Explore further: Bumble bees in the last frontier

More information: Test of the invasive pathogen hypothesis of bumble bee decline in North America, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1525266113

Related Stories

Bumble bees in the last frontier

June 15, 2015

There is little information about bee populations in Alaska, where native bee pollination is critical to the maintenance of subarctic ecosystems. A team from the University of Alaska Fairbanks and the USDA have now completed ...

Common insecticide may not harm bumble bees

December 22, 2015

Investigators have found no effect of an insecticide called thiamethoxam on bumble bees that forage on flowering winter oilseed rape. Using realistic field conditions, the researchers treated seeds of oilseed rape with the ...

Managed bees spread and intensify diseases in wild bees

November 5, 2015

For various reasons, wild pollinators are in decline across many parts of the world. To combat this, managed honey bees and bumblebees are frequently shipped in to provide valuable pollination services to crops. But does ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.