Plant photosynthesis inhibited by bacterial ancestor

March 8, 2016, Commissariat a l'Energie Atomique (CEA)

Researchers at CNRS, CEA and Université d'Aix-Marseille have demonstrated that an ancient signaling pathway inherited from bacteria impacts plant growth and development. Chloroplast, the compartment responsible for plant photosynthesis, is a key component of this signaling pathway. Understanding how this signaling pathway functions would allow for development of strategies to protect crops against climatic change and to improve photosynthesis so as to generate biofuels and other valuable products. These findings were published in Plant Cell on 25th February 2016.

Researchers at CEA, CNRS and Université d'Aix-Marseille have investigated a , scarcely studied until now, which was already present in the bacterial ancestor of , the compartment where photosynthesis takes place. This signaling pathway is dependent on a molecule that plays an important role in bacterial stress response: Guanosine tetraphosphate. By genetically modifying the guanosine tetraphosphate content in plant chloroplast, the researchers have shown that it inhibits chloroplast activity, impacting both function and size. Surprisingly, the researchers have also shown that this bacterial signaling pathway plays a key role in communication between the chloroplast and the cell nucleus that regulates and development.

This signaling pathway could be used to optimize the photosynthetic efficiency of plants subject to water and nutrient deficiencies, with potential applications in agriculture and reactor-based crop development for green chemistry and algae-based biofuel solutions.

Photosynthesis takes place in chloroplast, which arose from an endosymbiotic relationship between a unicellular eukaryote organism[ (common ancestor of plants and animals) and a bacterium over a billion years ago. This relationship enables photosynthetic eukaryotes (green and algae) to support ecosystems throughout the planet.

Explore further: Network of tubes plays a key role in plants' immune defense

More information: Matteo Sugliani et al. An ancient bacterial signaling pathway controls chloroplast function to regulate growth and development in Arabidopsis., The Plant Cell (2016). DOI: 10.1105/tpc.16.00045

Related Stories

What makes a plant a plant?

June 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Biochemistry detective work: Algae at night

November 10, 2014

Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae, and select bacteria to transform the energy from sunlight during the daytime into chemical energy in the form of sugars ...

Sequencing hundreds of chloroplast genomes now possible

January 31, 2013

Researchers at the University of Florida and Oberlin College have developed a sequencing method that will allow potentially hundreds of plant chloroplast genomes to be sequenced at once, facilitating studies of molecular ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.