Tunable peptide emulsifiers discovered

February 18, 2016

Emulsions, the stabilized mixtures of oil and water are the basis of many food and personal care products such as spreads, creams, and pastes. Each product has different requirements and there is a need for emulsifiers that can be tuned, or tailored but are also biocompatible and biodegradable.

Now, Dr. Rein V. Ulijn is among the scientists from the City University of New York's Advanced Science Research Center (ASRC) and the University of Strathclyde who discovered a new way to create emulsions with tunable properties, based on very simple biological molecules, as published as the cover article in the journal Advanced Materials.

Ulijn—Director of the ASRC's Nanoscience Initiative—and Strathclyde's Dr. Tell Tuttle used a combination of experiments and simulations to show that dramatically variable oil-in-water emulsions may be produced from tripeptides.

The research group showed the potential to form emulsions with tunable stability by mixing oil, water and designed peptides composed of specific sequences of just three —the building blocks of proteins which are the structural and functional units of all living systems.

"We are using the same biological building materials that nature uses—but in much simpler ways—to form these short peptides," Ulijn said. "These emulsions are biodegradable to amino acids, which are safe for use in food and drugs. Their sequence-dependent tunability enables us to match specific applications and will allow academic and commercial groups to make stable food products."

"This project provides an excellent example of how fundamental science can be rapidly translated to real-world applications when the right team is in place" said Dr. Gillian M. Small, Vice Chancellor for Research and Executive Director of the CUNY ASRC. "The Advanced Science Research Center brings together top researchers, provides them with a creative environment and the most advanced equipment to spark innovative approaches to complex scientific challenges."

Because there are nearly 8,000 possible sequences of amino acids in tripeptides, the team used both experimental and computational methods to narrow down the particular combination of amino acids that would form the appropriate structures.

"The computational methods applied in this case allow us to rapidly distinguish between the differing ability of the 8,000 different tripeptides to form emulsions," Tuttle said. "In particular, these methods can be used to identify peptides that are able to form emulsions with differing stabilities and within different environmental conditions before any experiments are carried out - leading to savings in both time and cost."

With this research, the team is investigating possible applications in food, cosmetics and . Paul McKnight, Senior Research and Development manager at Macphie—a Scotland-based food ingredient manufacturer—said the research will have a significant impact on its manufacturing techniques.

"This is a very exciting project to be involved in as it has a tremendous bearing on what we do as a company due to the wide use of emulsifiers, stabilisers and gellators across our product range, which includes sweet and savoury sauces, dressings and batters required to make cakes and muffins," McKnight said. "The insight and direction we were able to give to the project through a food industry perspective from material functionality requirements to the end use application of them, has helped focus the direction of the project and assist in the definitions required to tune the peptides to the necessary performance attributes."

Explore further: Breakthrough simplifies design of gels for food, cosmetics and biomedicine

More information: Gary G. Scott et al. Tripeptide Emulsifiers, Advanced Materials (2016). DOI: 10.1002/adma.201504697

Related Stories

Understanding emulsions in foods

August 20, 2013

An emulsion is a mixture of two fluids such as oil and water that is achieved by breaking up the molecules in both substances into very fine, small droplets in order to keep the combination from separating. In the August ...

Recommended for you

Polymer additive could revolutionize plastics recycling

February 24, 2017

When Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used ...

Nano-sized hydrogen storage system increases efficiency

February 24, 2017

Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers including colleagues from Sandia National Laboratories to develop an efficient hydrogen storage system that could be a boon for ...

Electrons use DNA like a wire for signaling DNA replication

February 24, 2017

In the early 1990s, Jacqueline Barton, the John G. Kirkwood and Arthur A. Noyes Professor of Chemistry at Caltech, discovered an unexpected property of DNA—that it can act like an electrical wire to transfer electrons quickly ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.