Scientists overcome hurdles for champion racehorses

February 4, 2016
Co-author Dr. Chavaunne Thorpe is riding her horse Betsy. Credit: Gabrielle Thorpe / QMUL

Scientists at Queen Mary University of London (QMUL) are a step closer to preventing the kind of injuries that affect ageing race horses like champion hurdler Rock on Ruby, the winner of Coral Hurdle at Ascot in 2015.

For the first time, the team at QMUL's School of Engineering and Materials Science were able to show how the types of proteins differ in parts of the tendon, and importantly how this changes as the tendon ages.

Co-author Dr Chavaunne Thorpe said: "When a horse runs, its muscles generate a massive amount of energy that is stored and released by the tendons in their legs. These can be likened to massive elastic bands that absorb energy as they are stretched, and release it again when they recoil.

"The key to the effectiveness of tendons is the ability of the fibres that they are made up of to slide across each other. When this ability to slide is reduced, the energy damages the tendon instead of being stored and released by it.

"In this new study, we have identified specific proteins that help the tendon fibres to slide, and this research shows that these proteins are replaced less quickly as aging occurs. This makes injuries of the type that ended Rock on Ruby's career more likely."

Rock on Ruby, the 2012 Cheltenham Champion Hurdle winner, famously went on to win the Coral Hurdle at Ascot last year despite suffering a career ending tendon injury during the race, which resulted in the untimely retirement of champion hurdler.

All tendons are made of subunits containing rope-like collagen surrounded by a material called the interfascicular matrix (IFM), which binds them together. The IFM is a soft, extendible material that allows the subunits to slide past one another, enabling the whole tendon to stretch.

Publishing in the journal Scientific Reports today (Thursday 4 February) the researchers identified which proteins are present and how rapidly many of the proteins in the IFM are refreshed in young tendons.

As tendons become older, the IFM becomes stiffer making it harder for the subunits to slide past each other. The results of this study indicate that the rate of proteins renewal drops with ageing in the IFM specifically.

Co-author Professor Hazel Screen added: "Our research proves that the increase in as horses age may be directly related to the slowdown in the renewal of specific proteins within their tendon tissues."

Tendon injury is common in horses as well as humans, with an economic impact of more than £3bn a year in horse racing. Around 16,000 horses are in training each year and the tendon injury rate is as high as 43 per cent with few horses returning to racing after injury.

Explore further: New research gives clues as to why older people get more tendon injuries

Related Stories

A look at treating those nagging tendon injuries

November 4, 2015

Treating tendons has definitely changed in the last 20 years. Many people are used to the term tendinitis, which was used for many years to describe injuries to the tendon. But as we learn more about them, we have learned ...

Recommended for you

Lab charts the anatomy of three molecular channels

January 23, 2017

Using a state-of-the-art imaging technology in which molecules are deep frozen, scientists in Roderick MacKinnon's lab at Rockefeller University have reconstructed in unprecedented detail the three-dimensional architecture ...

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

Research describes missing step in how cells move their cargo

January 23, 2017

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

Immune defense without collateral damage

January 23, 2017

Researchers from the University of Basel in Switzerland have clarified the role of the enzyme MPO. In fighting infections, this enzyme, which gives pus its greenish color, produces a highly aggressive acid that can kill pathogens ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.