Physicists create magnetic 2-D metal in artificial oxide material

An international research group led by physicists at the University of Arkansas created magnetic two-dimensional metal in an artificial oxide material that could be used to make better transistors.

Physicists hope to harness the power of an electron's spin to make spin transport electronics—spintronics—multifunctional computational devices that could replace hundreds of conventional devices, said Jak Chakhalian, professor of physics at the U of A who directed the research.

"Our idea was to take a sheet of non-magnetic, two-dimensional electronic gas in an oxide interface and add a third layer that would make the ultrathin metal magnetic with atomic precision," Chakhalian said.

The discovery furthers the understanding and control of at the nanoscale in complex interfaces, said Yanwei Cao, a postdoctoral research associate at the U of A who led the study.

The research team published its findings in Physical Review Letters, the journal of the American Physical Society, in a paper titled "Magnetic Interactions at Nanoscale in Trilayer Titanates."

"What we discovered is that by adding a third magnetic layer to previously known two-dimensional electron gases we can make this two-dimensional sheet of magnetic and control the degrees of magnetism by tuning the layer's thickness," Cao said. "This has important implications for spintronic research."


Explore further

Physicists create magnetic state in atomic layers of transition metal oxide

More information: Yanwei Cao et al. Magnetic Interactions at the Nanoscale in Trilayer Titanates, Physical Review Letters (2016). DOI: 10.1103/PhysRevLett.116.076802
Journal information: Physical Review Letters

Citation: Physicists create magnetic 2-D metal in artificial oxide material (2016, February 24) retrieved 17 July 2019 from https://phys.org/news/2016-02-physicists-magnetic-d-metal-artificial.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
5 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more