Seeing cancer cells in 3-D (w/ Video)

February 22, 2016
Extracted surfaces of two cancer cells. (Left) A lung cancer cell colored by actin intensity near the cell surface. Actin is a structural molecule that is integral to cell movement. (Right) A melanoma cell colored by PI3-kinase activity near the cell surface. PI3K is a signaling molecule that is key to many cell processes. Credit: Welf and Driscoll et al.

Cancer cells don't live on glass slides, yet the vast majority of images related to cancer biology come from the cells being photographed on flat, two-dimensional surfaces—images that are sometimes used to make conclusions about the behaviour of cells that normally reside in a more complex environment. But a new high-resolution microscope, presented February 22 in Developmental Cell, now makes it possible to visualize cancer cells in 3D and record how they are signaling to other parts of their environment, revealing previously unappreciated biology of how cancer cells survive and disperse within living things.

"There is clear evidence that the environment strongly affects cellular behavior—thus, the value of cell culture experiments on glass must at least be questioned," says senior author Reto Fiolka, an optical scientist at the University of Texas Southwestern Medical Center. "Our is one tool that may bring us a deeper understanding of the molecular mechanisms that drive cancer cell behavior, since it enables high-resolution imaging in more realistic tumor environments."

In their study, Fiolka and colleagues, including co-senior author Gaudenz Danuser, and co-first authors Meghan Driscoll and Erik Welf, also of UT Southwestern, used their microscope to image different kinds of skin cancer cells from patients. They found that in a 3D environment (where cells normally reside), unlike a glass slide, multiple melanoma cell lines and primary melanoma cells (from patients with varied genetic mutations) form many small protrusions called blebs. One hypothesis is that this blebbing may help the survive or move around and could thus play a role in skin cancer cell invasiveness or drug resistance in patients.

The video will load shortly
AMelanoma cell (red) embedded in a 3-D collagen matrix (white). A 100 x 100 x 100 μm cube is shown, with one corner cut away to show the interaction of the cell with the collagen. Credit: Welf and Driscoll et al.

The researchers say that this is a first step toward understanding 3D biology in tumor microenvironments. And since these kinds of images may be too complicated to interpret by the naked eye alone, the next step will be to develop powerful computer platforms to extract and process the information.

"When we conceived of this project, we first asked what we wanted to measure and then designed a microscope and analytical platform to achieve this goal," says co-first author Erik Welf, a cell biologist. "We hope that now instead of asking what we can measure, scientists will ask what we must measure in order to make meaningful contributions to cancer cell biology."

The microscope control software and image analytical code are freely available to the scientific community.

The video will load shortly
A spheroid of many lung cancer cells illustrates a diversity of behaviors. Credit: Welf and Driscoll et al.:

Explore further: A microscope that sees live cells in 3D

More information: Developmental Cell, Welf and Driscoll et al.: "Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments" dx.doi.org/10.1016/j.devcel.2016.01.022

Related Stories

A microscope that sees live cells in 3D

December 9, 2015

EPFL spin-off Nanolive has launched the 3D Cell Explorer, a microscope for observing living cells in 3D. This new tool could be a real boon for researchers in such areas as infertility.

Video: Finding the key to cancer metastasis

October 2, 2015

The capacity of cancer cells to spread throughout the body and invade new tissues — to become metastatic — makes them deadly. What makes metastatic cells different?

Chasing invasive cancer cells with a laser

December 7, 2015

What makes invasive cancer cells behave differently than the other cells in the tumor from which they arise? Let's turn them red with a laser and find out.

Spreading cancer cells must change their environment to grow

December 3, 2015

Spreading cancer cells arriving in a new part of the body must be able to change their new environment to continue to grow, according to a study by Cancer Research UK scientists at the Francis Crick Institute, published in ...

Recommended for you

Cell fate regulation by LIN41 determined by binding location

January 20, 2017

Helge Großhans and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have elucidated the mode of action of the RNA-binding protein and stem cell factor LIN41. In an animal model, they showed that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.